Câu hỏi:

04/08/2024 275

Cho lăng trụ đứng \(ABC.A'B'C'\) có \(ABC\) là tam giác vuông \(AB = BC = 1\,;{\rm{ AA'}} = \sqrt 2 ,\) \[M\] là trung điểm của \[BC.\] Khoảng cách giữa 2 đường thẳng \[AM\] và \(B'C\) là

Đáp án: ……….

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho lăng trụ đứng \(ABC.A'B'C'\) có \(ABC\) là tam giác vuông \(AB = BC = 1\,;{\rm{ AA'}} = \sqrt 2 ,\) \[M\] là trung điểm của \[BC.\] Khoảng cách giữa 2 đường thẳng \[AM\] và \(B'C\) là Đáp án: ………. (ảnh 1)

Gọi \[N\] là trung điểm của \(BB'\) nên \(MN\,{\rm{//}}\,B'C.\)

 

\( \Rightarrow \left( {AMN} \right)\,{\rm{//}}\,B'C \Rightarrow d\left( {AM,\,B'C} \right) = d\left( {B'C,\left( {AMN} \right)} \right) = d\left( {C,\left( {AMN} \right)} \right)\)

Tam giác vuông \[ABC\] có \(AB = BC = 1 \Rightarrow \Delta ABC\) vuông cân tại B \( \Rightarrow AM = \sqrt {A{B^2} + B{M^2}}  = \sqrt {1 + \frac{1}{4}}  = \frac{{\sqrt 5 }}{2}\).

Xét tam giác vuông \(BB'C\) có:

\(B'C = {\rm{ }}\sqrt {B{{B'}^2} + B{C^2}}  = \sqrt {2 + 1}  = \sqrt 3  \Rightarrow MN = \frac{{\sqrt 3 }}{2}\).

Xét tam giác vuông \[ABN\] có: \(AN = \sqrt {A{B^2} + B{N^2}}  = \sqrt {{1^2} + {{\left( {\frac{{\sqrt 2 }}{2}} \right)}^2}}  = \frac{{\sqrt 6 }}{2}\).

\( \Rightarrow {S_{AMN}} = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)}  = \frac{{\sqrt {14} }}{8}\).

Ta có \({S_{AMC}} = \frac{1}{2}AB \cdot MC = \frac{1}{2} \cdot 1 \cdot \frac{1}{2} = \frac{1}{4} \Rightarrow {V_{NAMC}} = \frac{1}{3}NM \cdot {S_{AMC}} = \frac{1}{3} \cdot \frac{{\sqrt 2 }}{2} \cdot \frac{1}{4} = \frac{{\sqrt 2 }}{{24}}\).

\({V_{N.AMC}} = \frac{1}{3}d\left( {C,\left( {AMN} \right)} \right) \cdot {S_{AMN}}\) nên \(d\left( {C,\left( {AMN} \right)} \right) = \frac{{3{V_{NAMC}}}}{{{S_{AMN}}}} = \frac{{\frac{{\sqrt 2 }}{8}}}{{\frac{{\sqrt {14} }}{8}}} = \frac{{\sqrt 7 }}{7}\).

Đáp án: \(\frac{{\sqrt 7 }}{7}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trong không gian tọa độ \[Oxyz,\] cho mặt cầu  và điểm \[M\] thay đổi trên mặt cầu. Giá trị lớn nhất của độ dài đoạn thẳng \[OM\] là  	A. 12.	B. 3.	C. 9.	D. 6. (ảnh 1)

Mặt cầu \(\left( S \right)\) có tâm \(I\left( { - 2\,;\,\,1\,;\,\,2} \right)\), bán kính \(R = 3.\)

Với \(M \in \left( S \right)\) ta có \(O{M_{\max }} = OI + R = \sqrt {{{\left( { - 2} \right)}^2} + {1^2} + {2^2}} + 3 = 6\).

Chọn D.

Lời giải

Điểm M là vị trí trùng nhau của hai ánh sáng.

\[{x_M} = {k_1}\frac{{{\lambda _1}D}}{a} \Rightarrow 5,6 = {k_1}\frac{{0,4.2}}{1} \Rightarrow {k_1} = 7\]

Hai vân sáng trùng nhau tại M thoả mãn: \[\frac{{{k_1}}}{{{k_2}}} = \frac{{{\lambda _2}}}{{{\lambda _1}}} \Rightarrow \frac{7}{{{k_2}}} = \frac{{{\lambda _2}}}{{0,4}} \Rightarrow {\lambda _2} = \frac{{2,8}}{{{k_2}}}\mu m\]

\[0,5\mu {\rm{m}} \le {\lambda _2} \le 0,65\mu {\rm{m}} \Rightarrow 0,5 \le \frac{{2,8}}{{{k_2}}} \le 0,65 \Rightarrow 4,3 \le {k_2} \le 5,6 \Rightarrow {k_2} = 5\]

Vậy tại M thì vân sáng bậc 7 của bức xạ λ1 trùng với vân sáng bậc 5 của bức xạ λ2.

Do đó \[{\lambda _2} = \frac{{2,8}}{{{k_2}}} = \frac{{2,8}}{5} = 0,56\,\mu m\]

Tại vị trí điểm \(N\) cách vân trung tâm 8,96 mm có: xN=k2'λ2Da8,96=k2'0,56.21k2'=8 ứng với vân sáng bậc 8 của bức xạ λ2.

Chọn A.

Câu 3

Phương thức biểu đạt chính được sử dụng trong đoạn trích trên là gì? 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Ở sinh vật nhân sơ, mạch khuôn của đoạn gen B có trình tự các nuclêôtit trong vùng mã hoá như sau:

Gen B: 3’...TAX ATG AXX AGT TXA AGT AAT TTX TAG XAT ATT...5’.

Do đột biến điểm làm xuất hiện ba alen mới có trình tự các nuclêôtit tương ứng là:

Alen B1: 3’...TAX ATG AXX AGX TXA AGT AAT TTX TAG XAT ATT...5’.

Alen B2: 3’...TAX ATG AXX AGT TXA AGT AAT TAX TAG XAT ATT...5’.

Alen B3: 3’...TAX ATG AXX AGT TXA AGT AXT TAX TAG XAT ATT...5’.

Phát biểu nào sau đây đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

PHẦN 2: TƯ DUY ĐỊNH TÍNH

Lĩnh vực: Ngữ văn (50 câu – 60 phút)

Những biện pháp tu từ nghệ thuật nào được sử dụng trong đoạn trích?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Tây Nguyên hiện nay phát triển mạnh

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Trong đoạn trích, tác giả muốn đem phân tích và giải thích đối tượng nào? 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay