Câu hỏi:

19/08/2025 158 Lưu

Tại điểm O đặt hai nguồn âm điểm giống hệt nhau phát ra âm đẳng hướng có công suất không đổi. Điểm A cách O một đoạn x (m). Trên tia vuông góc với OA tại A lấy điểm B cách A một khoảng 5 m. Tại điểm M nằm trên đoạn AB sao cho AM = 3,2 m ta đặt một máy đo cường độ âm thanh. Thay đổi x để \[\widehat {MOB}\] có giá trị lớn nhất, khi đó mức cường độ âm tại A là LA = 35 dB. Coi các nguồn âm là hoàn toàn giống nhau. Để mức cường độ âm hiển thị trên máy đo là Lo = 45 dB thì cần đặt thêm tại O bao nhiêu nguồn âm nữa?

Đáp án: ……….

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có OA = x (m); AB = 5 m; AM = 3,2 m.

Tại điểm O đặt hai nguồn âm điểm giống hệt nhau phát ra âm đẳng hướng có công suất không đổi. Điểm A cách O một đoạn x (m).  (ảnh 1)

\(\tan \widehat {MOB} = \tan \left( {{{\rm{\alpha }}_1} - {{\rm{\alpha }}_2}} \right) = \frac{{\tan {{\rm{\alpha }}_1} - \tan {{\rm{\alpha }}_2}}}{{1 + \tan {{\rm{\alpha }}_1}\tan {{\rm{\alpha }}_2}}} = \frac{{\frac{5}{x} - \frac{{3,2}}{x}}}{{1 + \frac{5}{x}.\frac{{3,2}}{x}}} = \frac{{1,8}}{{x + \frac{{16}}{x}}}\)

Theo BĐT Cosi, ta có: \(x + \frac{{16}}{x} \ge 2\sqrt {16}  = 8 \Rightarrow x = 8\,m.\) Do đó: \(OM = \sqrt {{8^2} + 3,{2^2}}  = \frac{{8\sqrt {29} }}{5}m\)

Ta có: \({{\rm{L}}_{\rm{A}}} - {{\rm{L}}_{\rm{M}}} = 10\log \frac{{{{\rm{I}}_{\rm{A}}}}}{{{{\rm{I}}_M}}} \Leftrightarrow 35 - 45 =  - 10 = 10\log \frac{{{{\rm{I}}_{\rm{A}}}}}{{{{\rm{I}}_{\rm{M}}}}} \Rightarrow \frac{{{{\rm{I}}_{\rm{A}}}}}{{{{\rm{I}}_{\rm{M}}}}} = 0,1\).

Ban đầu, tại O đặt 2 nguồn nên ta có: \({I_A} = \frac{{2P}}{{4\pi R_A^2}}\)

Gọi n là số nguồn cần đặt thêm tại O nên ta có: \({I_M} = \frac{{(n + 2)P}}{{4\pi R_M^2}}\)

\( \Rightarrow \frac{{{I_A}}}{{{I_M}}} = \frac{2}{{n + 2}}\frac{{R_M^2}}{{R_A^2}} \Rightarrow \frac{2}{{n + 2}}.\frac{{{{\left( {\frac{{8\sqrt {29} }}{5}} \right)}^2}}}{{{8^2}}} = 0,1 \Rightarrow n = 22.\)

Đáp án. 22.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hàm số \(T =  - 0,008{t^3} - 0,16t + 28\) với \(t \in \left[ {1\,;\,\,10} \right].\)

Ta có \(T' =  - 0,024{t^2} - 0,16\) với \(t \in \left[ {1\,;\,\,10} \right].\)

Suy ra hàm số \(T\) nghịch biến trên đoạn \(\left[ {1\,;\,\,10} \right].\)

Nhiệt độ thấp nhất trong phòng đạt được là:

\({T_{\min }} = T\left( {10} \right) =  - 0,008 \cdot {10^3} - 0,16 \cdot 10 + 28 = 18,4\;\,\left( {^\circ C} \right)\).

Đáp án: \(18,4\).

Câu 2

A. Chiếm tỉ lệ cao và ngày càng tăng.

B. Chiếm tỉ lệ thấp và ngày càng tăng.

C. Chiếm tỉ lệ cao và ngày càng giảm.

D. Chiếm tỉ lệ thấp và ngày càng giảm.

Lời giải

Dân cư nông thôn của nước ta chiếm tỉ lệ cao và ngày càng giảm. Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Chính phủ liên hiệp quốc dân.

B. Ủy Ban Khởi nghĩa toàn quốc.

C. Ủy Ban lâm thời khu giải phóng.

D. Ủy Ban Dân tộc giải phóng Việt Nam.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP