Câu hỏi:
05/08/2024 59Tại điểm O đặt hai nguồn âm điểm giống hệt nhau phát ra âm đẳng hướng có công suất không đổi. Điểm A cách O một đoạn x (m). Trên tia vuông góc với OA tại A lấy điểm B cách A một khoảng 5 m. Tại điểm M nằm trên đoạn AB sao cho AM = 3,2 m ta đặt một máy đo cường độ âm thanh. Thay đổi x để \[\widehat {MOB}\] có giá trị lớn nhất, khi đó mức cường độ âm tại A là LA = 35 dB. Coi các nguồn âm là hoàn toàn giống nhau. Để mức cường độ âm hiển thị trên máy đo là Lo = 45 dB thì cần đặt thêm tại O bao nhiêu nguồn âm nữa?
Đáp án: ……….
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có OA = x (m); AB = 5 m; AM = 3,2 m.
\(\tan \widehat {MOB} = \tan \left( {{{\rm{\alpha }}_1} - {{\rm{\alpha }}_2}} \right) = \frac{{\tan {{\rm{\alpha }}_1} - \tan {{\rm{\alpha }}_2}}}{{1 + \tan {{\rm{\alpha }}_1}\tan {{\rm{\alpha }}_2}}} = \frac{{\frac{5}{x} - \frac{{3,2}}{x}}}{{1 + \frac{5}{x}.\frac{{3,2}}{x}}} = \frac{{1,8}}{{x + \frac{{16}}{x}}}\)
Theo BĐT Cosi, ta có: \(x + \frac{{16}}{x} \ge 2\sqrt {16} = 8 \Rightarrow x = 8\,m.\) Do đó: \(OM = \sqrt {{8^2} + 3,{2^2}} = \frac{{8\sqrt {29} }}{5}m\)
Ta có: \({{\rm{L}}_{\rm{A}}} - {{\rm{L}}_{\rm{M}}} = 10\log \frac{{{{\rm{I}}_{\rm{A}}}}}{{{{\rm{I}}_M}}} \Leftrightarrow 35 - 45 = - 10 = 10\log \frac{{{{\rm{I}}_{\rm{A}}}}}{{{{\rm{I}}_{\rm{M}}}}} \Rightarrow \frac{{{{\rm{I}}_{\rm{A}}}}}{{{{\rm{I}}_{\rm{M}}}}} = 0,1\).
Ban đầu, tại O đặt 2 nguồn nên ta có: \({I_A} = \frac{{2P}}{{4\pi R_A^2}}\)
Gọi n là số nguồn cần đặt thêm tại O nên ta có: \({I_M} = \frac{{(n + 2)P}}{{4\pi R_M^2}}\)
\( \Rightarrow \frac{{{I_A}}}{{{I_M}}} = \frac{2}{{n + 2}}\frac{{R_M^2}}{{R_A^2}} \Rightarrow \frac{2}{{n + 2}}.\frac{{{{\left( {\frac{{8\sqrt {29} }}{5}} \right)}^2}}}{{{8^2}}} = 0,1 \Rightarrow n = 22.\)
Đáp án. 22.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Để tăng nhiệt độ trong phòng từ \(28^\circ {\rm{C}}\), một hệ thống làm mát được phép hoạt động trong 10 phút. Gọi \(T\) (đơn vị \(^\circ C\)) là nhiệt độ phòng ở phút thứ \(t\) được cho bởi công thức \(T = - 0,008{t^3} - 0,16t + 28\) với \(t \in \left[ {1\,;\,\,10} \right].\) Nhiệt độ thấp nhất trong phòng đạt được trong thời gian 10 phút kể từ khi hệ thống bắt đầu hoạt động là bao nhiêu độ C?
Câu 3:
Trong không gian \[Oxyz,\] cho ba điểm \[A\left( {3\,;\,\,5\,;\, - 1} \right),\,\,B\left( {7\,;\,\,x\,;\,\,1} \right)\] và \(C\left( {9\,;\,\,2\,;\,\,y} \right).\) Để ba điểm \[A,\,\,B,\,\,C\] thẳng hàng thì giá trị \(x + y\) bằng
Câu 4:
Câu 5:
Một mảnh vườn hình đa giác có chu vi bằng 63m độ dài các cạnh là các số nguyên lập thành một cấp số nhân có công bội bằng 2. Hỏi số cạnh của đa giác đó là bao nhiêu?
Câu 6:
Câu 7:
Tính đến đầu năm 2011, dân số toàn tỉnh Bình Phước đạt gần \[905\,\,300\] người, mức tăng dân số là \[1,37\% \] mỗi năm. Tỉnh đã thực hiện tốt chủ trương \[100\% \] trẻ em đúng độ tuổi đều vào lớp 1. Đến năm học 2024 – 2025 ngành giáo dục của tỉnh cần chuẩn bị bao nhiêu phòng học cho học sinh lớp 1, mỗi phòng dành cho 35 học sinh? (Giả sử trong năm sinh của lứa học sinh vào lớp 1 đó toàn tỉnh có \[2\,\,400\] người chết, số trẻ tử vong trước 6 tuổi không đáng kể).
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 5)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Nghĩa của từ
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
về câu hỏi!