Câu hỏi:

05/08/2024 127

Tại điểm O đặt hai nguồn âm điểm giống hệt nhau phát ra âm đẳng hướng có công suất không đổi. Điểm A cách O một đoạn x (m). Trên tia vuông góc với OA tại A lấy điểm B cách A một khoảng 5 m. Tại điểm M nằm trên đoạn AB sao cho AM = 3,2 m ta đặt một máy đo cường độ âm thanh. Thay đổi x để \[\widehat {MOB}\] có giá trị lớn nhất, khi đó mức cường độ âm tại A là LA = 35 dB. Coi các nguồn âm là hoàn toàn giống nhau. Để mức cường độ âm hiển thị trên máy đo là Lo = 45 dB thì cần đặt thêm tại O bao nhiêu nguồn âm nữa?

Đáp án: ……….

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có OA = x (m); AB = 5 m; AM = 3,2 m.

Tại điểm O đặt hai nguồn âm điểm giống hệt nhau phát ra âm đẳng hướng có công suất không đổi. Điểm A cách O một đoạn x (m).  (ảnh 1)

\(\tan \widehat {MOB} = \tan \left( {{{\rm{\alpha }}_1} - {{\rm{\alpha }}_2}} \right) = \frac{{\tan {{\rm{\alpha }}_1} - \tan {{\rm{\alpha }}_2}}}{{1 + \tan {{\rm{\alpha }}_1}\tan {{\rm{\alpha }}_2}}} = \frac{{\frac{5}{x} - \frac{{3,2}}{x}}}{{1 + \frac{5}{x}.\frac{{3,2}}{x}}} = \frac{{1,8}}{{x + \frac{{16}}{x}}}\)

Theo BĐT Cosi, ta có: \(x + \frac{{16}}{x} \ge 2\sqrt {16}  = 8 \Rightarrow x = 8\,m.\) Do đó: \(OM = \sqrt {{8^2} + 3,{2^2}}  = \frac{{8\sqrt {29} }}{5}m\)

Ta có: \({{\rm{L}}_{\rm{A}}} - {{\rm{L}}_{\rm{M}}} = 10\log \frac{{{{\rm{I}}_{\rm{A}}}}}{{{{\rm{I}}_M}}} \Leftrightarrow 35 - 45 =  - 10 = 10\log \frac{{{{\rm{I}}_{\rm{A}}}}}{{{{\rm{I}}_{\rm{M}}}}} \Rightarrow \frac{{{{\rm{I}}_{\rm{A}}}}}{{{{\rm{I}}_{\rm{M}}}}} = 0,1\).

Ban đầu, tại O đặt 2 nguồn nên ta có: \({I_A} = \frac{{2P}}{{4\pi R_A^2}}\)

Gọi n là số nguồn cần đặt thêm tại O nên ta có: \({I_M} = \frac{{(n + 2)P}}{{4\pi R_M^2}}\)

\( \Rightarrow \frac{{{I_A}}}{{{I_M}}} = \frac{2}{{n + 2}}\frac{{R_M^2}}{{R_A^2}} \Rightarrow \frac{2}{{n + 2}}.\frac{{{{\left( {\frac{{8\sqrt {29} }}{5}} \right)}^2}}}{{{8^2}}} = 0,1 \Rightarrow n = 22.\)

Đáp án. 22.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Dân cư nông thôn của nước ta chiếm tỉ lệ cao và ngày càng giảm. Chọn C.

Lời giải

Xét hàm số \(T =  - 0,008{t^3} - 0,16t + 28\) với \(t \in \left[ {1\,;\,\,10} \right].\)

Ta có \(T' =  - 0,024{t^2} - 0,16\) với \(t \in \left[ {1\,;\,\,10} \right].\)

Suy ra hàm số \(T\) nghịch biến trên đoạn \(\left[ {1\,;\,\,10} \right].\)

Nhiệt độ thấp nhất trong phòng đạt được là:

\({T_{\min }} = T\left( {10} \right) =  - 0,008 \cdot {10^3} - 0,16 \cdot 10 + 28 = 18,4\;\,\left( {^\circ C} \right)\).

Đáp án: \(18,4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP