Câu hỏi:
06/08/2024 158Một con lắc lò xo đặt trên mặt phẳng nằm ngang gồm lò xo nhẹ có một đầu cố định, đầu kia gắn với vật nhỏ có khối lượng m. Ban đầu vật m được giữ ở vị trí để lò xo bị nén 9 cm. Vật M có khối lượng bằng một nửa khối lượng vật m, nằm sát m. Thả nhẹ m để hai vật chuyển động theo phương của trục lò xo. Bỏ qua mọi ma sát. Ở thời điểm lò xo có chiều dài cực đại lần đầu tiên, khoảng cách giữa hai vật m và M có giá trị bằng bao nhiêu cm? Làm tròn đến chữ số thập phân thứ nhất.
Đáp án: ……….
Quảng cáo
Trả lời:
Khi hệ vật chuyển động từ vị trí biên ban đầu đến VTCB:
CLLX \((m + M = 1,5m)\):\({v_{\max }} = A{\rm{\omega }} = A\sqrt {\frac{k}{{1,5m}}} {\rm{. }}\)
Khi đến VTCB, hai vật tách khỏi nhau do m bắt đầu chuyển động chậm dần, lúc này M chuyển động thẳng đều với vận tốc \({{\rm{v}}_{\max }}\) ở trên.
Xét CLLX có vật m (vận tốc cực đại không thay đồi):
\({{\rm{v}}_{\max }} = {{\rm{A}}^\prime }{{\rm{\omega }}^\prime } = {{\rm{A}}^\prime }\sqrt {\frac{{\rm{k}}}{{\rm{m}}}} = {\rm{A}}\sqrt {\frac{{\rm{k}}}{{1,5\;{\rm{m}}}}} \Rightarrow {{\rm{A}}^\prime } = \frac{{\rm{A}}}{{\sqrt {1,5} }} = \frac{9}{{\sqrt {1,5} }}\;{\rm{cm}}\)
Từ khi tách nhau (qua VTCB) đến khi lò xo có chiều dài cực đại thì m đến vị trí biên Aˊ, thời gian dao động là \(\Delta {\rm{t}} = \frac{{\rm{T}}}{4} = \frac{{2{\rm{\pi }}}}{{4{{\rm{\omega }}^\prime }}} = \frac{{\rm{\pi }}}{{2{{\rm{\omega }}^\prime }}};\) với \({{\rm{\omega }}^\prime } = \sqrt {\frac{{\rm{k}}}{{\rm{m}}}} = {\rm{\omega }}\sqrt {1,5} \Rightarrow \Delta {\rm{t}} = \frac{\pi }{{{\rm{\omega }}.2\sqrt {1,5} }}\).
Trong thời gian này, \({\rm{M}}\) đi được quãng đường: \({\rm{s}} = {{\rm{v}}_{\max }} \cdot \Delta t = \omega {\rm{A}} \cdot \frac{\pi }{{\omega \cdot 2\sqrt {1,5} }} = \frac{{4,5\pi }}{{\sqrt {1,5} }}\;{\rm{cm}}\)
Khoảng cách hai vật: \(\Delta d = s - {A^\prime } \approx 4,2\;{\rm{cm}}{\rm{.}}\) Đáp án. 4,2
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(f\left( x \right)\) thỏa mãn các điều kiện \(f'\left( x \right) = a{x^2} + \frac{b}{{{x^3}}},\,\,f'(1) = 3,\,\,f\left( 1 \right) = 2\) và \(f\left( {\frac{1}{2}} \right) = - \frac{1}{{12}}.\) Khi đó, giá trị của \(2a + b\) bằng
Câu 2:
Trong không gian \[Oxyz,\] cho hai điểm \(A\left( { - 2\,;\,\,4\,;\,\,1} \right),\,\,B\left( {2\,;\,\,0\,;\,\,3} \right)\) và đường thẳng \(d:\left\{ {\begin{array}{*{20}{l}}{x = 1 + t}\\{y = 1 + 2t}\\{z = - 2 + t}\end{array}} \right..\) Gọi \((S)\) là mặt cầu đi qua \[A,\,\,B\] và có tâm thuộc đường thẳng \[d.\] Bán kính mặt cầu \((S)\) bằng
Câu 3:
Trong không gian \[Oxyz,\] cho hai điểm \[A\left( {3\,;\,\,1\,;\,\,2} \right),\,\,B\left( { - 3\,;\,\, - 1\,;\,\,0} \right)\] và mặt phẳng \((P):x + y + 3z - 14 = 0.\) Điểm \(M\) thuộc mặt phẳng \((P)\) sao cho \(\Delta MAB\) vuông tại \[M.\] Tính khoảng cách từ điểm \(M\) đến mặt phẳng \(\left( {Oxy} \right).\)
Câu 4:
Đọc đoạn trích sau và trả lời câu hỏi:
Tiếng ai tha thiết bên cồn
Bâng khuâng trong dạ, bồn chồn bước đi
Áo chàm đưa buổi phân ly
Cầm tay nhau biết nói gì hôm nay...
(Việt Bắc – Tố Hữu)
Câu 5:
Đọc đoạn trích sau đây và trả lời câu hỏi:
Thời gian chạy qua tóc mẹ
Một màu trắng đến nôn nao
Lưng mẹ cứ còng dần xuống
Cho con ngày một thêm cao.
(Trong lời mẹ hát – Trương Nam Hương)
Câu 6:
Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 2021\,;\,\,2021} \right]\) để đồ thị hàm số \(y = \frac{{x + 2}}{{\sqrt {{x^2} - 2x + m} }}\) có hai đường tiệm cận đứng?
Câu 7:
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận