Câu hỏi:

06/08/2024 223

Trong thí nghiệm Young về giao thoa ánh sáng đơn sắc với bước sóng \(\lambda \), khoảng cách giữa hai khe là 1,0 mm. Vẫn giao thoa được quan sát qua một kính lúp có tiêu cự 5 cm đặt cách mặt phẳng hai khe một khoảng L = 65 cm. Một người có mặt bình thường đặt mắt sát kính lúp và quan sát hệ vân trong trạng thái không điều tiết thì thấy góc trông khoảng vân là 20,5'. Bước sóng của ánh sáng dùng trong thí nghiệm trên là bao nhiêu?

Trong thí nghiệm Young về giao thoa ánh sáng đơn sắc với bước sóng \(\lambda \), khoảng cách giữa hai khe là 1,0 mm.  (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Góc trông vật = góc hợp giữa 2 tia sáng từ 2 đầu mút của vật tới quang tâm của mắt.

Trong thí nghiệm Young về giao thoa ánh sáng đơn sắc với bước sóng \(\lambda \), khoảng cách giữa hai khe là 1,0 mm.  (ảnh 2)

Góc trông khoảng vân \({\rm{\alpha }} = \tan {\rm{\alpha }} = \frac{{{\rm{ ni }}}}{{\rm{f}}}\)(với n = 1).

Khi quan sát khoảng vân qua kính lúp, mắt đặt sát kính lúp và muốn quan sát trong trạng thái không điều tiết (với mắt bình thường) thì ảnh của hệ vân qua kính lúp phải ở vô cùng, tức là khi đó hệ vân giao thoa sẽ nằm tại tiêu diện vật của kính lúp. Nói cách khác, tiêu diện vật của kính lúp đóng vai trò là màn ảnh của hệ giao thoa.

Theo đề bài: \({\rm{D}} = {\rm{L}} - {\rm{f}} = 60(\;{\rm{cm}})\)

Do\[{\rm{\alpha }} \ll \,\, \Rightarrow \tan {\rm{\alpha }} \approx {\rm{\alpha }} \Rightarrow {\rm{\alpha }} = \frac{i}{f} \Rightarrow {\rm{i}} = {\rm{f\alpha }} = \frac{{50.20,5.3,14}}{{60.180}} \approx 0,3\;{\rm{mm}} \Rightarrow \lambda  = \frac{{{\rm{ia}}}}{{\rm{D}}} = 500\;{\rm{nm}}{\rm{.}}\] Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \[f'\left( 1 \right) = 3 \Rightarrow a + b = 3\].   (1)

Hàm số có đạo hàm liên tục trên khoảng \[\left( {0\,;\,\, + \infty } \right)\], các điểm \(x = 1,x = \frac{1}{2}\) đều thuộc \((0; + \infty )\) nên

\(f(x) = \int {f'} (x){\rm{d}}x = \int {\left( {a{x^2} + \frac{b}{{{x^3}}}} \right)} \,\,{\rm{d}}x = \frac{{a{x^3}}}{3} - \frac{b}{{2{x^2}}} + C.\)

• \(f\left( 1 \right) = 2 \Leftrightarrow \frac{a}{3} - \frac{b}{2} + C = 2\).                                                         (2)

• \(f\left( {\frac{1}{2}} \right) =  - \frac{1}{{12}} \Rightarrow \frac{a}{{24}} - 2b + C =  - \frac{1}{{12}}\).   (3).

Từ (1), (2) và (3) ta được hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{a + b = 3}\\{\frac{a}{3} - \frac{b}{2} + C = 2}\\{\frac{a}{{24}} - 2b + C =  - \frac{1}{{12}}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 2}\\{b = 1}\\{C = \frac{{11}}{6}}\end{array} \Rightarrow 2a + b = 2 \cdot 2 + 1 = 5.} \right.} \right.\)

Chọn C.

Lời giải

Gọi I là tâm của mặt cầu \((S),\,\,I \in d \Rightarrow I\left( {1 + t\,;\,\,1 + 2t\,;\,\, - 2 + t} \right).\)

\( \Rightarrow \overrightarrow {AI}  = \left( {3 + t\,;\,\, - 3 + 2t\,;\,\, - 3 + t} \right)\,;\,\,\overrightarrow {BI}  = \left( { - 1 + t\,;\,\,1 + 2t\,;\,\, - 5 + t} \right)\)

Vì (S) đi qua \[A,\,\,B\] nên ta có \(IA = IB \Leftrightarrow I{A^2} = I{B^2}\)

\[ \Leftrightarrow {(3 + t)^2} + {\left( { - 3 + 2t} \right)^2} + {\left( { - 3 + t} \right)^2} = {\left( { - 1 + t} \right)^2} + {\left( {1 + 2t} \right)^2} + {\left( { - 5 + t} \right)^2}\]

\( \Leftrightarrow 4t = 0 \Leftrightarrow t = 0 \Rightarrow \overrightarrow {IA}  = \left( {3\,;\,\, - 3\,;\,\, - 3} \right).\)

Vậy bán kính mặt cầu \[(S)\] là \[R = IA = \sqrt {{3^2} + {{\left( { - 3} \right)}^2} + {{\left( { - 3} \right)}^2}}  = 3\sqrt 3 .\] Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP