Câu hỏi:

06/08/2024 238

Một lọ đựng dung dịch \({\rm{NaOH}}\)(dung dịch X) để lâu ngày.

Nồng độ \({\rm{NaOH}}\)trong X được xác định lại như sau:

Thí nghiệm 1: thêm 75,0 mL dung dịch \({\rm{Ca}}{({\rm{OH}})_2}\) 0,1M vào \(100\;{\rm{mL}}\) dung dịch X thu được 0,5 gam kết tủa trắng.

Thí nghiệm 2: cho từ từ dung dịch HCl 1M vào \(100\;{\rm{mL}}\) dung dịch \({\rm{X}}\), nhận thấy có 54,0 mL dung dịch \({\rm{HCl}}\) phản ứng. Sau phản ứng, thu được dung dịch Y có pH = 7 và khí A không màu, có tỉ khối so với khí hydrogen là 22.

Một lọ đựng dung dịch (dung dịch X) để lâu ngày. Nồng độ trong X được xác định lại như sau:  (ảnh 1)

Nồng độ \({\rm{NaOH}}\) trong dung dịch X là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Dung dịch \({\rm{NaOH}}\) để lâu ngày bị chuyển hóa một phần về \({\rm{N}}{{\rm{a}}_2}{\rm{C}}{{\rm{O}}_3}.\)

Thí nghiệm 1: thêm 75,0 mL dung dịch \({\rm{Ca}}{({\rm{OH}})_2}0,1{\rm{M}}\) vào \(100\;{\rm{mL}}\) dung dịch \({\rm{X}}\) thu được 0,5 gam kết tủa trắng.

Kết tủa là \({\rm{CaC}}{{\rm{O}}_3} = 0,005\;{\rm{mol}} \Rightarrow \) Số mol của \({\rm{N}}{{\rm{a}}_2}{\rm{C}}{{\rm{O}}_3} = 0,005\,\,mol.\)

Thí nghiệm 2: Khí A không màu, có tỉ khối so với khí hydrogen là 22 nên khí A là \(C{O_2}.\)

Sau phản ứng, thu được dung dịch \({\rm{Y}}\)\({\rm{pH}} = 7\) đồng nghĩa với việc \({\rm{HCl}},{\rm{NaOH}}\) phản ứng hết, dung dịch thu được có môi trường trung tính (chứa muối trung hòa).

Khi thêm từ từ \({\rm{HCl}}\) xảy ra phản ứng như sau:

\(\begin{array}{l}{H^ + } + O{H^ - } \to {H_2}O\\2{H^ + } + CO_3^{2 - } \to C{O_2} + {H_2}O\\0,01\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \leftarrow \,0,005\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(mol)\\{n_{HCl}} = 0,054\,(mol) \to {n_{NaOH}} = 0,054 - 0,01 = 0,044\,(mol)\end{array}\)

Þ Nồng độ \({\rm{NaOH}}\) trong dung dịch \({\rm{X}}\)\(0,44{\rm{M}}{\rm{.}}\) Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \[f'\left( 1 \right) = 3 \Rightarrow a + b = 3\].   (1)

Hàm số có đạo hàm liên tục trên khoảng \[\left( {0\,;\,\, + \infty } \right)\], các điểm \(x = 1,x = \frac{1}{2}\) đều thuộc \((0; + \infty )\) nên

\(f(x) = \int {f'} (x){\rm{d}}x = \int {\left( {a{x^2} + \frac{b}{{{x^3}}}} \right)} \,\,{\rm{d}}x = \frac{{a{x^3}}}{3} - \frac{b}{{2{x^2}}} + C.\)

• \(f\left( 1 \right) = 2 \Leftrightarrow \frac{a}{3} - \frac{b}{2} + C = 2\).                                                         (2)

• \(f\left( {\frac{1}{2}} \right) =  - \frac{1}{{12}} \Rightarrow \frac{a}{{24}} - 2b + C =  - \frac{1}{{12}}\).   (3).

Từ (1), (2) và (3) ta được hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{a + b = 3}\\{\frac{a}{3} - \frac{b}{2} + C = 2}\\{\frac{a}{{24}} - 2b + C =  - \frac{1}{{12}}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 2}\\{b = 1}\\{C = \frac{{11}}{6}}\end{array} \Rightarrow 2a + b = 2 \cdot 2 + 1 = 5.} \right.} \right.\)

Chọn C.

Lời giải

Gọi I là tâm của mặt cầu \((S),\,\,I \in d \Rightarrow I\left( {1 + t\,;\,\,1 + 2t\,;\,\, - 2 + t} \right).\)

\( \Rightarrow \overrightarrow {AI}  = \left( {3 + t\,;\,\, - 3 + 2t\,;\,\, - 3 + t} \right)\,;\,\,\overrightarrow {BI}  = \left( { - 1 + t\,;\,\,1 + 2t\,;\,\, - 5 + t} \right)\)

Vì (S) đi qua \[A,\,\,B\] nên ta có \(IA = IB \Leftrightarrow I{A^2} = I{B^2}\)

\[ \Leftrightarrow {(3 + t)^2} + {\left( { - 3 + 2t} \right)^2} + {\left( { - 3 + t} \right)^2} = {\left( { - 1 + t} \right)^2} + {\left( {1 + 2t} \right)^2} + {\left( { - 5 + t} \right)^2}\]

\( \Leftrightarrow 4t = 0 \Leftrightarrow t = 0 \Rightarrow \overrightarrow {IA}  = \left( {3\,;\,\, - 3\,;\,\, - 3} \right).\)

Vậy bán kính mặt cầu \[(S)\] là \[R = IA = \sqrt {{3^2} + {{\left( { - 3} \right)}^2} + {{\left( { - 3} \right)}^2}}  = 3\sqrt 3 .\] Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP