Câu hỏi:

06/08/2024 1,079 Lưu

Ở ruồi giấm, alen A quy định thân xám trội hoàn toàn so với alen a quy định thân đen; alen B quy định cánh dài trội hoàn toàn so với alen b quy định cánh cụt; hai cặp gen này cùng nằm trên một cặp nhiễm sắc thể thường. Alen D quy định mắt đỏ trội hoàn toàn so với alen d quy định mắt trắng; gen này nằm ở vùng không tương đồng trên nhiễm sắc thể giới tính X. Cho ruồi đực và ruồi cái (P) đều có thân xám, cánh dài, mắt đỏ giao phối với nhau, thu được F1 có 5% ruồi đực thân đen, cánh cụt, mắt trắng. Biết rằng không xảy ra đột biến. Theo lí thuyết, tỉ lệ ruồi cái thân đen, cánh cụt, mắt đỏ ở F1 chiếm tỉ lệ là bao nhiêu phần trăm?

Đáp án: ……….

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ruồi đực và ruồi cái (P) đều có thân xám, cánh dài, mắt đỏ giao phối với nhau thu được F1 có kiểu hình ruồi đực thân đen, cánh cụt, mắt trắng P dị hợp 3 cặp gen. Mặt khác, ở ruồi giấm, hoán vị gen chỉ xảy ra ở con cái Con đực P có kiểu gen \(\frac{{{\rm{AB}}}}{{{\rm{ab}}}}{{\rm{X}}^{\rm{D}}}{\rm{Y}}\).

Ta có: \(\frac{{{\rm{ab}}}}{{{\rm{ab}}}}{{\rm{X}}^{\rm{D}}}{\rm{Y}} = 0,05 \to \frac{{{\rm{ab}}}}{{{\rm{ab}}}} = 0,2 \to \)Con cái P cho giao tử ab = 0,4 (> 0,25).

Vậy kiểu gen của \(P:\frac{{AB}}{{ab}}{X^D}Y \times \frac{{AB}}{{ab}}{X^D}{X^d}\).

Tỉ lệ ruồi cái thân đen, cánh cụt, mắt đỏ ở \({{\rm{F}}_1}\left( {\frac{{{\rm{ab}}}}{{ab}}{{\rm{X}}^{\rm{D}}}{{\rm{X}}^ - }} \right) = 0,2 \times \frac{1}{2} = 10\% .\)Đáp án: 10%.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \[f'\left( 1 \right) = 3 \Rightarrow a + b = 3\].   (1)

Hàm số có đạo hàm liên tục trên khoảng \[\left( {0\,;\,\, + \infty } \right)\], các điểm \(x = 1,x = \frac{1}{2}\) đều thuộc \((0; + \infty )\) nên

\(f(x) = \int {f'} (x){\rm{d}}x = \int {\left( {a{x^2} + \frac{b}{{{x^3}}}} \right)} \,\,{\rm{d}}x = \frac{{a{x^3}}}{3} - \frac{b}{{2{x^2}}} + C.\)

• \(f\left( 1 \right) = 2 \Leftrightarrow \frac{a}{3} - \frac{b}{2} + C = 2\).                                                         (2)

• \(f\left( {\frac{1}{2}} \right) =  - \frac{1}{{12}} \Rightarrow \frac{a}{{24}} - 2b + C =  - \frac{1}{{12}}\).   (3).

Từ (1), (2) và (3) ta được hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{a + b = 3}\\{\frac{a}{3} - \frac{b}{2} + C = 2}\\{\frac{a}{{24}} - 2b + C =  - \frac{1}{{12}}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 2}\\{b = 1}\\{C = \frac{{11}}{6}}\end{array} \Rightarrow 2a + b = 2 \cdot 2 + 1 = 5.} \right.} \right.\)

Chọn C.

Lời giải

Gọi I là tâm của mặt cầu \((S),\,\,I \in d \Rightarrow I\left( {1 + t\,;\,\,1 + 2t\,;\,\, - 2 + t} \right).\)

\( \Rightarrow \overrightarrow {AI}  = \left( {3 + t\,;\,\, - 3 + 2t\,;\,\, - 3 + t} \right)\,;\,\,\overrightarrow {BI}  = \left( { - 1 + t\,;\,\,1 + 2t\,;\,\, - 5 + t} \right)\)

Vì (S) đi qua \[A,\,\,B\] nên ta có \(IA = IB \Leftrightarrow I{A^2} = I{B^2}\)

\[ \Leftrightarrow {(3 + t)^2} + {\left( { - 3 + 2t} \right)^2} + {\left( { - 3 + t} \right)^2} = {\left( { - 1 + t} \right)^2} + {\left( {1 + 2t} \right)^2} + {\left( { - 5 + t} \right)^2}\]

\( \Leftrightarrow 4t = 0 \Leftrightarrow t = 0 \Rightarrow \overrightarrow {IA}  = \left( {3\,;\,\, - 3\,;\,\, - 3} \right).\)

Vậy bán kính mặt cầu \[(S)\] là \[R = IA = \sqrt {{3^2} + {{\left( { - 3} \right)}^2} + {{\left( { - 3} \right)}^2}}  = 3\sqrt 3 .\] Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP