Câu hỏi:

21/08/2024 208 Lưu

Để đánh giá độ chính xác của hai hệ thống đóng gói tự động các túi cà phê của hai phân xưởng người ta đã tiến hành thu thập mẫu số liệu về khối lượng của một số gói cà phê (đơn vị tính là gam) của mỗi phân xưởng cho kết quả như sau:

Phân xưởng A:        

Tính số trung bình, độ lệch chuẩn của khối lượng một gói cà phê do các phân xưởng A, B sản xuất. Dựa trên kết quả tính được, hãy nêu nhận xét về độ chính xác của hai hệ thống đóng gói. (ảnh 1)

Phân xưởng B:

Tính số trung bình, độ lệch chuẩn của khối lượng một gói cà phê do các phân xưởng A, B sản xuất. Dựa trên kết quả tính được, hãy nêu nhận xét về độ chính xác của hai hệ thống đóng gói. (ảnh 2)

Tính số trung bình, độ lệch chuẩn của khối lượng một gói cà phê do các phân xưởng A, B sản xuất. Dựa trên kết quả tính được, hãy nêu nhận xét về độ chính xác của hai hệ thống đóng gói.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cỡ mẫu của phân xưởng A là: nA = 20.

Cỡ mẫu của phân xưởng B là; nB = 20.

Số trung bình của mẫu số liệu về khối lượng các gói cà phê của phân xưởng A là:

\({\overline x _A}\) = \(\frac{1}{{20}}\)(203 + 207 + 205 + ….+ 206 + 204) = 200.

Xét mẫu số liệu của phân xưởng B. Chọn giá trị đại diện cho các nhóm, ta có bảng sau:

Tính số trung bình, độ lệch chuẩn của khối lượng một gói cà phê do các phân xưởng A, B sản xuất. Dựa trên kết quả tính được, hãy nêu nhận xét về độ chính xác của hai hệ thống đóng gói. (ảnh 3)

Số trung bình của mẫu số liệu về khối lượng các gói cà phê của phân xưởng B là:

\({\overline x _B}\) = \(\frac{1}{{20}}\)(2.192 + 5.196 + 6.200 + 5.204 + 2.208) = 200.

Độ lệch chuẩn của mẫu số liệu về khối lượng của các gói cà phê của phân xưởng A là:

sA = \(\sqrt {\frac{1}{{20}}\left( {{{203}^2} + {{207}^2} + .... + {{204}^2}} \right) - {{200}^2}} \) ≈ 4,93.

Độ lệch chuẩn của mẫu số liệu về khối lượng của các gói cà phê của phân xưởng B là:

sB = \(\sqrt {\frac{1}{{20}}\left( {{{2.192}^2} + {{5.196}^2} + {{6.200}^2} + {{5.204}^2} + {{2.208}^2}} \right) - {{200}^2}} \) ≈ 4,56.

Do 4,56 < 4,93 nên hệ thống đóng gói của phân xưởng B tốt hơn phân xưởng A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn giá trị đại diện cho các nhóm số liệu ta có bảng thống kê sau:

Một người đầu tư cùng một số tiền vào hai lĩnh vực A và B. Nhà đầu tư này ghi lại số tiền thu được hàng tháng trong hai năm theo mỗi lĩnh vực cho  (ảnh 2)

Cỡ mẫu của lĩnh vực A là: nA = 2 + 5 + 10 + 5 + 2 = 24.

Cỡ mẫu của lĩnh vực B là: nB = 1 + 8 + 7 + 6 + 2 = 24.

Số tiền trung bình thu được mỗi tháng từ lĩnh vực A là:

\({\overline x _A}\) = \(\frac{1}{{24}}\)(2.7,5 + 5.22,5 + 10.17,5 + 5.22,5 + 2.27,5) = 17,5.

Số tiền trung bình thu được mỗi tháng từ lĩnh vực B là:

\({\overline x _B}\) = \(\frac{1}{{24}}\)(1.7,5 + 8.22,5 + 7.17,5 + 6.22,5 + 2.27,5) = 17,5.

Độ lệch chuẩn của số tiền thu được trong các tháng theo lĩnh vực A là:

sA = \(\sqrt {\frac{1}{{24}}\left( {2.7,{5^2} + 5.12,{5^2} + 10.17,{5^2} + 5.22,{5^2} + 2.27,{5^2}} \right) - 17,{5^2}} \) ≈ 5,2.

Độ lệch chuẩn của số tiền thu được trong các tháng theo lĩnh vực A là:

sB =  \(\sqrt {\frac{1}{{24}}\left( {1.7,{5^2} + 8.12,{5^2} + 7.17,{5^2} + 6.22,{5^2} + 2.27,{5^2}} \right) - 17,{5^2}} \) ≈ 5,2.

Do các độ lệch chuẩn sA = sB ≈ 5,2 nên mức độ ổn định của hai phương án đầu tư là như nhau.

Lời giải

a) Chọn giá trị đại diện cho các nhóm số liệu ta có bảng thống kê sau:

Bảng thống kê sau cho biết dân số thế giới theo độ tuổi (đơn vị tính là triệu người) trong hai năm 2000 và 2020:   a) Chọn 75 là giá trị đại diện cho nhóm (ảnh 2)

Ước lượng tuổi trung bình của dân số thế giới năm 2000 là:

\({\overline x _{2000}}\) = \(\frac{{2,5.619,57 + 10.1240 + 20.1090 + 45.2780 + 75.423,26}}{{619,57 + 1240 + 1090 + 2780 + 423,26}}\) ≈ 31,3016.

Ước lượng tuổi trung bình của dân số thế giới năm 2020 là:

\({\overline x _{2020}}\) = \(\frac{{2,5.679,15 + 10.1330 + 20.1220 + 45.3870 + 75.739,48}}{{679,15 + 1330 + 1220 + 3870 + 739,48}}\) ≈ 34,3184.

b) Với mẫu số liệu về tuổi của dân số thế giới năm 2000:

Cỡ mẫu là: 619,57 + 1240 + 1090 + 2780 + 423,26 = 6152,83.

Do \(\frac{n}{4} = \frac{{6152,83}}{4}\)= 1538,2075 nên nhóm chứa tứ phân vị thứ nhất là [5; 15). Ta có:

Q1 = 5 +  \(\frac{{1538,2075 - 619,57}}{{1240}}.10\) ≈ 12,41.

Do \(\frac{{3n}}{4} = \frac{{3.6152,83}}{4}\) = 4614,6225 nên nhóm chứa tứ phân vị thứ ba là [25; 65). Ta có:

Q3 = 25 + \(\frac{{4614,6225 - (619,57 + 1240 + 1090)}}{{2780}}.40\) ≈ 48,96.

Như vậy, khoảng tứ phân vị của mẫu số liệu về tuổi dân số thế giới năm 2000 là:

∆Q2000 ≈ 48,96 – 12,41 = 36,55.

Với mẫu số liệu về tuổi của dân số thế giới năm 2020:

Cỡ mẫu là: 679,15 + 1330 + 1220 + 3870 + 739,48 = 7838,63.

Do \(\frac{n}{4} = \frac{{7838,63}}{4}\) = 1959,6575 nên nhóm chứa tứ phân vị thứ nhất là [5; 15). Ta có:

Q1 = 5 +  \(\frac{{1959,6575 - 679,15}}{{1330}}.10\) ≈ 14,63.

Do \(\frac{{3n}}{4} = \frac{{3.1959,6575}}{4}\) = 5878,9725 nên nhóm chứa tứ phân vị thứ ba là [25; 65). Ta có:

Q3 = 25 + \(\frac{{5878,9725 - (679,15 + 1330 + 1220)}}{{3870}}.40\) ≈ 52,39.

Như vậy, khoảng tứ phân vị của mẫu số liệu về tuổi dân số thế giới năm 2020 là:

∆Q2020 ≈ 52,39 – 14,63 = 37,76.

Nhận xét: Dân số thế giới năm 2020 già hơn và có độ tuổi phân tán hơn so với dân số thế giới năm 2000.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP