Câu hỏi:
22/08/2024 1,617Tung hai con xúc xắc cân đối. Biết rằng tổng số chấm xuất hiện trên hai con xúc xắc bằng 8. Xác suất để ít nhất có một con xúc xắc xuất hiện mặt 3 chấm là
A. \(\frac{2}{5}\).
B. \(\frac{3}{5}\).
C. \(\frac{3}{7}\).
D. \(\frac{4}{7}\).
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Gọi C là biến cố: “Ít nhất có một con xúc xắc xuất hiện mặt ba chấm”;
D là biến cố: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 8”.
C = {(1; 3); (2; 3); (3; 3); (4; 3); (5; 3); (6; 3); (3; 6); (3; 5); (3; 4); (3; 2); (3; 1)}.
D ={(2; 6); (3; 5); (4; 4); (5; 3); (6; 2)}.
CD = {(3; 5); (5; 3)}.
Từ đó, n(D) = 5, n(CD) = 2, suy ra P(D) = \(\frac{5}{{36}}\), P(CD) = \(\frac{2}{{36}}\).
Suy ra P(C | D) = \(\frac{{P\left( {CD} \right)}}{{P\left( D \right)}} = \frac{2}{{36}}:\frac{5}{{36}} = \frac{2}{5}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Chọn ngẫu nhiên một gia đình có 2 con. Biết rằng gia đình đó có con gái. Xác suất để gia đình đó có một con trai, một con gái là
A. \(\frac{2}{5}\).
B. \(\frac{3}{5}\).
C. \(\frac{3}{4}\).
D. \(\frac{2}{3}\).
Câu 2:
Một lớp 12 có 40 học sinh. Trong đó có 22 em đăng kí thi Đại học quốc gia (ĐHQG), 25 em đăng kí thi Đại học bách khoa (ĐHBK), 3 em không đăng kí thi cả hai đại học này. Chọn ngẫu nhiên một học sinh. Biết rằng em đó đăng kí thi ĐHQG. Xác suất em đó đăng kí thi ĐHBK là
A. \(\frac{6}{{11}}\).
B. \(\frac{7}{{12}}\).
C. \(\frac{8}{{13}}\).
D. \(\frac{5}{{11}}\).
Câu 3:
Giao hai con xúc xắc cân đối. Biết rằng có ít nhất một con xúc xắc xuất hiện mặt 5 chấm. Xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 7 là
A. \(\frac{3}{{11}}\).
B. \(\frac{2}{{11}}\).
C. \(\frac{4}{{13}}\).
D. \(\frac{3}{{13}}\).
Câu 4:
Một kì thi Toán có hai bài. Một bài theo hình thức trắc nghiệm. Một bài theo hình thức tự luận. Một lớp có 30 học sinh tham dự kì thi đó. Kết luận là 25 học sinh đạt bài thi trắc nghiệm, 26 học sinh đạt bài thi tự luận; 3 học sinh không đạt cả hai bài. Chọn ngẫu nhiên một học sinh. Tính xác suất để:
a) Học sinh đó đạt bài thi tự luận, biết rằng học sinh đó đạt bài thi trắc nghiệm.
b) Học sinh đó đạt bài thi trắc nghiệm, biết rằng học sinh đó đạt bài thi tự luận.
Câu 5:
Trong một lớp học nhạc có 60% là học sinh nữ. biết rằng có 20% học sinh nữ học violon, 30% học sinh nam học violon. Chọn ngẫu nhiên một học sinh.
a) Tính xác suất để học sinh này là nam và chơi violon.
b) Tính xác suất để học sinh này học violon.
Câu 6:
Cho P(A) = 0,2, P(B) = 0,5, P(B | A) = 0,8. Khi đó, P(A | B) bằng
A. 0,32.
B. 0,3.
C. 0,35.
D. 0,31.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận