Giải SBT Toán 12 Tập 2 KNTT Bài tập cuối chương VI có đáp án
25 người thi tuần này 4.6 216 lượt thi 10 câu hỏi
🔥 Đề thi HOT:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: A
Ta có: P(A | B) = \(\frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}}\) = \(\frac{{0,2.0,8}}{{0,5}}\) = 0,32.
Lời giải
Đáp án đúng là: D
Kí hiệu G là con gái, T là con trai.
Gọi E là biến cố: “Gia đình đó có một con trai, một con gái”.
F là biến cố: “Gia đình đó có con gái”.
Do đó, P(E | F) là xác suất chọn được gia đình có hai con gồm một trai, một gái.
Ta có: F = {GT; GG; TG}, n(F) = 3;
E = {GT; TG};
EF = {GT; TG}, n(EF) = 2.
Nên P(F) = \(\frac{3}{4}\), P(EF) = \(\frac{2}{4}\).
Suy ra P(E | F) = \(\frac{{P\left( {EF} \right)}}{{P\left( F \right)}} = \frac{2}{3}\).
Lời giải
Đáp án đúng là: B
Gọi A là biến cố: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 7”;
B là biến cố: “Có một con xúc xắc xuất hiện 5 chấm”.
Do đó, P(A | B) là xác suất để chọn được hai xúc xắc có tổng số chấm là 7, biết một con xúc xắc có 5 chấm.
Ta có: A = {(1; 6); (2; 5); (3; 4); (4; 3); (5; 2); (6; 1)}.
B = {(1; 5); (2; 5); (3; 5); (4; 5); (5; 5); (6; 5); (5; 6); (5; 4); (5; 3); (5; 2); (5; 1)}.
AB = A ∩ B = {(2; 5); (5; 2)}.
Từ đó, n(B) = 11, n(AB) = 2.
Suy ra P(B) = \(\frac{{11}}{{36}}\), P(AB) = \(\frac{2}{{36}}\).
Vậy P(A | B) = \(\frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{2}{{36}}:\frac{{11}}{{36}} = \frac{2}{{11}}\).
Lời giải
Đáp án đúng là: A
Gọi C là biến cố: “Ít nhất có một con xúc xắc xuất hiện mặt ba chấm”;
D là biến cố: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 8”.
C = {(1; 3); (2; 3); (3; 3); (4; 3); (5; 3); (6; 3); (3; 6); (3; 5); (3; 4); (3; 2); (3; 1)}.
D ={(2; 6); (3; 5); (4; 4); (5; 3); (6; 2)}.
CD = {(3; 5); (5; 3)}.
Từ đó, n(D) = 5, n(CD) = 2, suy ra P(D) = \(\frac{5}{{36}}\), P(CD) = \(\frac{2}{{36}}\).
Suy ra P(C | D) = \(\frac{{P\left( {CD} \right)}}{{P\left( D \right)}} = \frac{2}{{36}}:\frac{5}{{36}} = \frac{2}{5}\).
Lời giải
Đáp án đúng là: D
Gọi A là biến cố: “Em đó đăng kí thi ĐHQG”;
B là biến cố: “Em đó đăng kí thi ĐHBK”.
Ta có biến cố A ∪ B: “Em đó đăng kí thi ĐHQG hoặc ĐHBK” là biến cố dối của biến cố: “Em đó không đăng kí thi cả hai đại học này”.
P(A) = \(\frac{{22}}{{40}}\); P(B) = \(\frac{{25}}{{40}}\); P(\(\overline A \overline B \)) = \(\frac{3}{{40}}\).
Từ đó: P(A ∪ B) = 1 – P(\(\overline A \overline B \)) = 1 − \(\frac{3}{{40}}\) = \(\frac{{37}}{{40}}\).
P(AB) = P(A) + P(B) – P(A ∪ B) = \(\frac{{22}}{{40}} + \frac{{25}}{{40}} - \frac{{37}}{{40}} = \frac{{10}}{{40}}\).
Vậy P(B | A) = \(\frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{10}}{{40}}:\frac{{22}}{{40}} = \frac{{10}}{{22}} = \frac{5}{{11}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
43 Đánh giá
50%
40%
0%
0%
0%