Thống kê về số vật nuôi trong 98 hộ gia đình ta có kết quả sau:
Chọn ngẫu nhiên một hộ gia đình. Tính xác suất để:
a) Hộ đó nuôi 2 vật nuôi biết rằng hộ đó có 4 người;
b) Hộ đó có 3 người biết rằng hộ đó có ít nhất 2 vật nuôi;
c) Hộ đó có ít nhất một vật nuôi, biết rằng hộ đó có ít nhất 4 người.
Thống kê về số vật nuôi trong 98 hộ gia đình ta có kết quả sau:

Chọn ngẫu nhiên một hộ gia đình. Tính xác suất để:
a) Hộ đó nuôi 2 vật nuôi biết rằng hộ đó có 4 người;
b) Hộ đó có 3 người biết rằng hộ đó có ít nhất 2 vật nuôi;
c) Hộ đó có ít nhất một vật nuôi, biết rằng hộ đó có ít nhất 4 người.
Quảng cáo
Trả lời:
a) Gọi A là biến cố: “Hộ đó nuôi 2 vật nuôi”.
B là biến cố: “Hộ đó có 4 người”.
Do đó, P(A | B) là xác suất hộ đó nuôi hai con, biết rằng hộ đó có 4 người.
Ta có: n(B) = 7 + 12 + 11 + 7 = 37, n(AB) = 11.
Do đó, P(B) = \(\frac{{37}}{{98}}\); P(AB) = \(\frac{{11}}{{98}}\).
Vậy P(A | B) = \(\frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{11}}{{37}}\).
b) Gọi C là biến cố: “Hộ đó có 3 người”;
D là biến cố: “Hộ đó có ít nhất 2 vật nuôi”.
Do đó, P(C | D) là xác suất hộ đó có 3 người biết rằng hộ đó có ít nhất 2 vật nuôi.
Ta có: n(D) = 29 + 16 = 45; n(CD) = 9 + 3 =12.
Do đó, P(D) = \(\frac{{45}}{{98}}\); P(CD) = \(\frac{{12}}{{98}}\).
Vậy P(C | D) = \(\frac{{P\left( {CD} \right)}}{{P\left( D \right)}} = \frac{{12}}{{45}} = \frac{4}{{15}}\).
c) Gọi E là biến cố: “Hộ đó có ít nhất một vật nuôi”;
F là biến cố: “Hộ đó có ít nhất 4 người”.
Do đó, P(E | F) là xác suất hộ đó có ít nhất một vật nuôi, biết rằng hộ đó có ít nhất 4 người.
Ta có: n(F) = 37 + 21 = 58, n(EF) = 30 + 18 = 48.
Do đó, P(F) = \(\frac{{58}}{{98}}\); P(EF) = \(\frac{{48}}{{98}}\).
Như vậy, P(E | F) = \(\frac{{P\left( {EF} \right)}}{{P\left( F \right)}} = \frac{{48}}{{58}} = \frac{{24}}{{29}}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Kí hiệu G là con gái, T là con trai.
Gọi E là biến cố: “Gia đình đó có một con trai, một con gái”.
F là biến cố: “Gia đình đó có con gái”.
Do đó, P(E | F) là xác suất chọn được gia đình có hai con gồm một trai, một gái.
Ta có: F = {GT; GG; TG}, n(F) = 3;
E = {GT; TG};
EF = {GT; TG}, n(EF) = 2.
Nên P(F) = \(\frac{3}{4}\), P(EF) = \(\frac{2}{4}\).
Suy ra P(E | F) = \(\frac{{P\left( {EF} \right)}}{{P\left( F \right)}} = \frac{2}{3}\).
Lời giải
Đáp án đúng là: D
Gọi A là biến cố: “Em đó đăng kí thi ĐHQG”;
B là biến cố: “Em đó đăng kí thi ĐHBK”.
Ta có biến cố A ∪ B: “Em đó đăng kí thi ĐHQG hoặc ĐHBK” là biến cố dối của biến cố: “Em đó không đăng kí thi cả hai đại học này”.
P(A) = \(\frac{{22}}{{40}}\); P(B) = \(\frac{{25}}{{40}}\); P(\(\overline A \overline B \)) = \(\frac{3}{{40}}\).
Từ đó: P(A ∪ B) = 1 – P(\(\overline A \overline B \)) = 1 − \(\frac{3}{{40}}\) = \(\frac{{37}}{{40}}\).
P(AB) = P(A) + P(B) – P(A ∪ B) = \(\frac{{22}}{{40}} + \frac{{25}}{{40}} - \frac{{37}}{{40}} = \frac{{10}}{{40}}\).
Vậy P(B | A) = \(\frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{10}}{{40}}:\frac{{22}}{{40}} = \frac{{10}}{{22}} = \frac{5}{{11}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.