Giải SBT Toán 12 Tập 2 KNTT Bài 19. Công thức xác suất toàn phần và công thức Bayes có đáp án
28 người thi tuần này 4.6 406 lượt thi 6 câu hỏi
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
175 câu Bài tập Số phức từ đề thi Đại học cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
191 câu Bài tập số phức mức độ cơ bản, nâng cao cực hay có lời giải chi tiết(P1)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Gọi A là biến cố: “Em học sinh đó thuộc đội tuyển Toán”.
⇒ \(\overline A \) là biến cố: “Em học sinh đó thuộc đội tuyển Ngữ văn”.
B là biến cố: “Em đó được giải”.
Số phần tử không gian mẫu: n(Ω) = 10 + 8 = 18.
P(A) = \(\frac{{10}}{{18}}\), P(B | A) = 0,8.
P(\(\overline A \)) = \(\frac{8}{{18}}\), P(B | \(\overline A \)) = 0,7.
Theo công thức xác suất toàn phần, ta có:
P(B) = P(A).P(B | A) + P(\(\overline A \)).P(B | \(\overline A \))
= \(\frac{{10}}{{18}}\).0,8 + \(\frac{8}{{18}}\).0,7
= \(\frac{{34}}{{45}}\) ≈ 0,7556.
Lời giải
Gọi A là biến cố: “Tottenham gặp đội xếp trên”;
B là biến cố: “Tottenham thắng”;
C là biến cố: “Tottenham thua”;
D là biến cố: “Tottenham hòa”.
Ta có: P(A) = \(\frac{7}{{19}}\); P(\(\overline A \)) = 1 – \(\frac{7}{{19}}\) = \(\frac{{12}}{{19}}\).
P(D | A) = 1 – P(B | A) – P(C | A) = 1 – 0,2 – 0,5 = 0,3.
P(D | \(\overline A \)) = 1 – P(B | \(\overline A \)) – P(C | \(\overline A \)) = 1 – 0,5 – 0,3 = 0,2.
Theo công thức xác suất toàn phần, ta có:
P(D) = P(A). P(D | A) + P(\(\overline A \)).P(D | \(\overline A \))
= \(\frac{7}{{19}}\).0,3 + \(\frac{{12}}{{19}}\).0,2 = \(\frac{9}{{38}}\) ≈ 0,2368.
Lời giải
Gọi A là biến cố: “Lấy được chiếc kẹo sô cô la đen từ túi I”
B là biến cố: “Lấy được chiếc kẹo sô cô la trắng từ túi II”.
Ta có: P(A) = \(\frac{3}{5}\), P(\(\overline A \)) = \(\frac{2}{5}\).
Nếu A xảy ra tức là lấy được chiếc kẹo sô cô la đen từ túi I thì thêm 2 chiếc kẹo sô cô la đen vào túi II. Khi đó túi II có 9 chiếc kẹo với 6 chiếc sô cô la đen, 3 chiếc kẹo sô cô la trắng.
Nếu A không xảy ra tức là chọn được chiếc kẹo sô cô la trắng từ túi I thì thêm 2 chiếc kẹo sô cô la trắng vào túi II. Khi đó túi II có 9 chiếc kẹo với 4 chiếc sô cô la đen, 5 chiếc sô cô la trắng.
Vậy P(B | A) = \(\frac{3}{9}\), P(B | \(\overline A \)) = \(\frac{5}{9}\).
Theo công thức tính xác suất toàn phần, ta được:
P(B) = P(A).P(B | A) + P(\(\overline A \)).P(B | \(\overline A \))
= \(\frac{3}{5}.\frac{3}{9} + \frac{2}{5}.\frac{5}{9} = \frac{{19}}{{45}}\).
Lời giải
Gọi A là biến cố: “Sản phẩm của phân xưởng I”;
B là biến cố: “Sản phẩm là phế phẩm”.
Khi đó, \(\overline A \) là biến cố: “Sản phẩm của phân xưởng II”
\(\overline B \) là biến cố: “Sản phẩm không là phế phẩm”.
Ta có: P(A) = 0,4; P(B | A) = 0,05.
P(\(\overline A \)) = 0,6; P(B | \(\overline A \)) = 0,02.
Theo công thức Bayes, ta có:
P(A | B) = \(\frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}\)
= \(\frac{{0,4.0,05}}{{0,4.0,05 + 0,6.0,02}} = \frac{5}{8}\).
Vậy xác suất để chọn được phế phẩm từ phân xưởng I là \(\frac{5}{8}\).
Lời giải
Gọi A là biến cố: “Cuốn sách thuộc ngăn trên”.
B là biến cố: “Cuốn sách là cuốn tiểu thuyết của nhà văn nước ngoài”.
Do đó, P(A | B) là xác suất lấy được cuốn sách thuộc ngăn trên là cuốn tiểu thuyết của nhà văn nước ngoài.
Ta có: P(A) = \(\frac{1}{3}\), P(B | A) = \(\frac{2}{5}\),
P(\(\overline A \)) = \(\frac{2}{3}\), P(B | \(\overline A \)) = \(\frac{1}{5}\).
Từ đó theo công thức Bayes ta có:
P(A | B) = \(\frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}\) = \(\left( {\frac{1}{3}.\frac{2}{5}} \right):\left( {\frac{1}{3}.\frac{2}{5} + \frac{2}{3}.\frac{1}{5}} \right)\) = \(\frac{1}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.