Giải SGK Toán 12 KNTT Bài 13. Ứng dụng hình học của tích phân có đáp án
39 người thi tuần này 4.6 761 lượt thi 15 câu hỏi
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a)

Gọi A(−2; 0), C(−1; 0), D(1; 0) và B, E lần lượt là giao điểm của đường thẳng x = −2, x = 1 với đường thẳng y = x + 1.
Do đó B(−2; −1), E(1; 2).
Khi đó S = S∆ABC + S∆CDE = \(\frac{1}{2}AB.AC + \frac{1}{2}CD.DE\)\( = \frac{1}{2}.1.1 + \frac{1}{2}.2.2 = \frac{5}{2}\).
b) \(\int\limits_{ - 2}^1 {\left| {f\left( x \right)} \right|} dx\)\( = \int\limits_{ - 2}^1 {\left| {x + 1} \right|} dx\)\( = \int\limits_{ - 2}^{ - 1} {\left| {x + 1} \right|} dx + \int\limits_{ - 1}^1 {\left| {x + 1} \right|} dx\)\( = - \int\limits_{ - 2}^{ - 1} {\left( {x + 1} \right)} dx + \int\limits_{ - 1}^1 {\left( {x + 1} \right)} dx\)
\[ = - \left. {\left( {\frac{{{x^2}}}{2} + x} \right)} \right|_{ - 2}^{ - 1} + \left. {\left( {\frac{{{x^2}}}{2} + x} \right)} \right|_{ - 1}^1\]\[ = \frac{1}{2} + \frac{3}{2} + \frac{1}{2} = \frac{5}{2}\].
Vậy \(S = \int\limits_{ - 2}^1 {\left| {f\left( x \right)} \right|} dx\).
Lời giải
Diện tích hình phẳng cần tính là:
\(\int\limits_0^3 {\left| {{x^2} - 4} \right|} dx\)\( = \int\limits_0^2 {\left| {{x^2} - 4} \right|} dx + \int\limits_2^3 {\left| {{x^2} - 4} \right|} dx\)\( = \int\limits_0^2 {\left( {4 - {x^2}} \right)} dx + \int\limits_2^3 {\left( {{x^2} - 4} \right)} dx\)
\( = \left. {\left( {4x - \frac{{{x^3}}}{3}} \right)} \right|_0^2 + \left. {\left( {\frac{{{x^3}}}{3} - 4x} \right)} \right|_2^3\)\( = \frac{{16}}{3} - 3 + \frac{{16}}{3} = \frac{{23}}{3}\).
Lời giải
a) Ta có \({S_1} = \int\limits_1^3 {\left| { - {x^2} + 4x} \right|dx} \)\( = \int\limits_1^3 {\left( { - {x^2} + 4x} \right)dx} \)\( = \left. {\left( { - \frac{{{x^3}}}{3} + 2{x^2}} \right)} \right|_1^3\)\( = 9 - \frac{5}{3} = \frac{{22}}{3}\).
\({S_2} = \int\limits_1^3 {\left| x \right|} dx\)\( = \int\limits_1^3 x dx\)\( = \left. {\frac{{{x^2}}}{2}} \right|_1^3 = \frac{9}{2} - \frac{1}{2} = 4\).
Do đó S = S1 – S2 = \(\frac{{22}}{3} - 4 = \frac{{10}}{3}\).
b) \(\int\limits_1^3 {\left| {f\left( x \right) - g\left( x \right)} \right|} dx\)\( = \int\limits_1^3 {\left| { - {x^2} + 4x - x} \right|} dx\)\( = \int\limits_1^3 {\left| { - {x^2} + 3x} \right|} dx\)\( = \int\limits_1^3 {\left( { - {x^2} + 3x} \right)} dx\)
\( = \left. {\left( { - \frac{{{x^3}}}{3} + 3.\frac{{{x^2}}}{2}} \right)} \right|_1^3\)\( = \frac{9}{2} - \frac{7}{6} = \frac{{10}}{3}\).
Vậy \(S = \int\limits_1^3 {\left| {f\left( x \right) - g\left( x \right)} \right|} dx\).
Lời giải

Diện tích hình phẳng cần tính là:
\(S = \int\limits_1^4 {\left| {\sqrt x - x + 2} \right|dx} \)\( = \int\limits_1^4 {\left( {\sqrt x - x + 2} \right)dx} \)\( = \left. {\left( {\frac{2}{3}{x^{\frac{3}{2}}} - \frac{{{x^2}}}{2} + 2x} \right)} \right|_1^4\)\( = \frac{{16}}{3} - \frac{{13}}{6} = \frac{{19}}{6}\).Lời giải
Hoành độ điểm cân bằng là nghiệm của phương trình:
−0,36x + 9 = 0,14x + 2 Û x = 14.
Tọa độ điểm cân bằng là (14; 3,96).
Thặng dư tiêu dùng là:
\({S_1} = \int\limits_0^{14} {\left| { - 0,36x + 9 - 3,96} \right|} dx\)\( = \int\limits_0^{14} {\left| { - 0,36x + 5,04} \right|} dx\)\( = \int\limits_0^{14} {\left( { - 0,36x + 5,04} \right)} dx\)
\( = \left. {\left( { - 0,18{x^2} + 5,04x} \right)} \right|_0^{14} = 35,28\).
Thặng dư sản xuất là:
\({S_2} = \int\limits_0^{14} {\left| {3,96 - 0,14x - 2} \right|} dx\)\( = \int\limits_0^{14} {\left| {1,96 - 0,14x} \right|} dx\)\( = \int\limits_0^{14} {\left( {1,96 - 0,14x} \right)} dx\)
\( = \left. {\left( {1,96x - 0,07{x^2}} \right)} \right|_0^{14}\)\( = 13,72\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.










