Câu hỏi:
13/07/2024 14,632
Ta biết rằng hàm cầu liên quan đến giá p của một sản phẩm với nhu cầu của người tiêu dùng, hàm cung liên quan đến giá p của sản phẩm với mức độ sẵn sàng cung cấp sản phẩm của nhà sản xuất. Điểm cắt nhau (x0; p0) của đồ thị hàm cầu p = D(x) và đồ thị hàm cung p = S(x) được gọi là điểm cân bằng.
Các nhà kinh tế gọi diện tích của hình giới hạn bởi đồ thị hàm cầu, đường ngang p = p0 và đường thẳng đứng x = 0 là thặng dư tiêu dùng. Tương tự, diện tích của hình giới hạn bởi đồ thị của hàm cung, đường nằm ngang p = p0 và đường thẳng đứng x = 0 được gọi là thặng dư sản xuất, như trong Hình 4.19.
(Theo R.Larson, Brief Calculus: An Applied Approach, 8th edition, Cengage Learning, 2009).
Giả sử hàm cung và hàm cầu của một loại sản phẩm được mô hình hóa bởi:
Hàm cầu: p = −0,36x + 9 và hàm cung: p = 0,14x + 2, trong đó x là số đơn vị sản phẩm. Tìm thặng dư tiêu dùng và thặng dư sản xuất cho sản phẩm này.
Ta biết rằng hàm cầu liên quan đến giá p của một sản phẩm với nhu cầu của người tiêu dùng, hàm cung liên quan đến giá p của sản phẩm với mức độ sẵn sàng cung cấp sản phẩm của nhà sản xuất. Điểm cắt nhau (x0; p0) của đồ thị hàm cầu p = D(x) và đồ thị hàm cung p = S(x) được gọi là điểm cân bằng.
Các nhà kinh tế gọi diện tích của hình giới hạn bởi đồ thị hàm cầu, đường ngang p = p0 và đường thẳng đứng x = 0 là thặng dư tiêu dùng. Tương tự, diện tích của hình giới hạn bởi đồ thị của hàm cung, đường nằm ngang p = p0 và đường thẳng đứng x = 0 được gọi là thặng dư sản xuất, như trong Hình 4.19.
(Theo R.Larson, Brief Calculus: An Applied Approach, 8th edition, Cengage Learning, 2009).
Giả sử hàm cung và hàm cầu của một loại sản phẩm được mô hình hóa bởi:
Hàm cầu: p = −0,36x + 9 và hàm cung: p = 0,14x + 2, trong đó x là số đơn vị sản phẩm. Tìm thặng dư tiêu dùng và thặng dư sản xuất cho sản phẩm này.

Quảng cáo
Trả lời:
Hoành độ điểm cân bằng là nghiệm của phương trình:
−0,36x + 9 = 0,14x + 2 Û x = 14.
Tọa độ điểm cân bằng là (14; 3,96).
Thặng dư tiêu dùng là:
\({S_1} = \int\limits_0^{14} {\left| { - 0,36x + 9 - 3,96} \right|} dx\)\( = \int\limits_0^{14} {\left| { - 0,36x + 5,04} \right|} dx\)\( = \int\limits_0^{14} {\left( { - 0,36x + 5,04} \right)} dx\)
\( = \left. {\left( { - 0,18{x^2} + 5,04x} \right)} \right|_0^{14} = 35,28\).
Thặng dư sản xuất là:
\({S_2} = \int\limits_0^{14} {\left| {3,96 - 0,14x - 2} \right|} dx\)\( = \int\limits_0^{14} {\left| {1,96 - 0,14x} \right|} dx\)\( = \int\limits_0^{14} {\left( {1,96 - 0,14x} \right)} dx\)
\( = \left. {\left( {1,96x - 0,07{x^2}} \right)} \right|_0^{14}\)\( = 13,72\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Xét tam giác OAB vuông tại A, có AB = OA.tanα = a.tanα.
Khi quay miền tam giác OAB xung quanh trục Ox ta được khối nón có bán kính đáy r = AB = a.tanα và chiều cao h = OA = a.
Do đó \(V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi {a^3}{\tan ^2}\alpha \).
b) Có \(V' = \frac{1}{3}\pi {a^3}.2\tan \alpha .\frac{1}{{{{\cos }^2}\alpha }}\).
Vì \(0 < \alpha \le \frac{\pi }{4}\) Þ 0 < tanα ≤ 1 nên V' > 0. Do đó V là hàm số đồng biến trên \(\left( {0;\frac{\pi }{4}} \right)\).
Do đó \(\mathop {\max }\limits_{\left( {0;\frac{\pi }{4}} \right]} V = V\left( {\frac{\pi }{4}} \right) = \frac{1}{3}\pi {a^3}\).
Vậy \(\alpha = \frac{\pi }{4}\) thì thể tích khối nón là lớn nhất.
Lời giải
Sự bất bình đẳng thu nhập của Hoa Kỳ vào năm 2005 là:
\(S = \int\limits_0^{100} {\left| {{{\left( {0,00061{x^2} + 0,0218x + 1723} \right)}^2} - x} \right|dx} \)
\( = \int\limits_0^{100} {\left| {\left( {{{0,00061}^2}{x^4} + {{4,7524.10}^{ - 4}}{x^2} + {{1723}^2} + {{2,6596.10}^{ - 5}}{x^3} + 2,10206{x^2} + 75,1228x} \right) - x} \right|dx} \)
\( = \int\limits_0^{100} {\left| {\left( {{{0,00061}^2}{x^4} + {{2,6596.10}^{ - 5}}{x^3} + 2,10253524{x^2} + 74,1228x + {{1723}^2}} \right)} \right|dx} \)
\( = \int\limits_0^{100} {\left( {{{0,00061}^2}{x^4} + {{2,6596.10}^{ - 5}}{x^3} + 2,10253524{x^2} + 74,1228x + {{1723}^2}} \right)dx} \)
\[ = \left. {\left( {{{7,442.10}^{ - 8}}.{x^5} + {{6,649.10}^{ - 6}}.{x^4} + 0,70084508.{x^3} + 37,0614.{x^2} + {{1723}^2}.x} \right)} \right|_0^{100}\]
\[ = {7,442.10^{ - 8}}{.100^5} + {6,649.10^{ - 6}}{.100^4} + {0,70084508.100^3} + {37,0614.100^2} + {1723^2}.100\]
= 297945768,2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.