Giải SGK Toán 12 KNTT Bài 12. Tích phân có đáp án

55 người thi tuần này 4.6 454 lượt thi 17 câu hỏi

🔥 Đề thi HOT:

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

Sau khi học xong bài này, ta giải quyết bài toán này như sau:

Ô tô dừng lại khi v(t) = 0. Tức là −40t + 20 = 0 Û t = 0,5 giây.

Từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển được quãng đường là:

S=00,540t+20dt=20t2+20t00,5=5(m).

Vậy quãng đường ô tô di chuyển được là 5 mét.

Lời giải

a)

Kí hiệu T là hình thang vuông giới hạn bởi đường thẳng y = x + 1, trục hoành và hai đường thẳng (ảnh 2)

Kí hiệu A(1; 0), B(4; 0) và C, D lần lượt là giao điểm của đường thẳng x = 4; x = 1 với đường thẳng y = x + 1.

Khi đó C(4; 5), D(1; 2).

Ta có: AD = 2; BC = 5; AB = 3.

Khi đó diện tích hình thang T là \(S = \frac{{\left( {AD + BC} \right).AB}}{2} = \frac{{\left( {2 + 5} \right).3}}{2} = \frac{{21}}{2}\).

b)

Kí hiệu T là hình thang vuông giới hạn bởi đường thẳng y = x + 1, trục hoành và hai đường thẳng (ảnh 3)

Gọi A(1; 0), B(t; 0), t [1; 4] và C, D lần lượt là giao điểm của đường thẳng x = t; x = 1 với đường thẳng y = x + 1.

Khi đó C(t; t + 1); D(1; 2).

Do đó AB = t – 1; AD = 2; BC = t + 1.

Khi đó diện tích hình thang ABCD là

\(S\left( t \right) = \frac{{\left( {AD + BC} \right).AB}}{2} = \frac{{\left( {t + 3} \right).\left( {t - 1} \right)}}{2} = \frac{{{t^2} + 2t - 3}}{2}.\)

c) Có \(S\left( t \right) = \frac{{{t^2} + 2t - 3}}{2}\)\( \Rightarrow S'\left( t \right) = {\left( {\frac{{{t^2} + 2t - 3}}{2}} \right)^\prime } = \frac{{2\left( {t + 1} \right)}}{2} = t + 1 = f\left( t \right)\).

Do đó S(t) là một nguyên hàm của hàm số f(t) = t + 1, t [1; 4].

\(S\left( 4 \right) = \frac{{{4^2} + 2.4 - 3}}{2} = \frac{{21}}{2};S\left( 1 \right) = \frac{{{1^2} + 2.1 - 3}}{2} = 0\).

Do đó S(4) – S(1) = S.

Câu 3

Xét hình thang cong giới hạn bởi đồ thị y = x2, trục hoành và hai đường thẳng x = 1, x = 2. Ta muốn tính diện tích S của hình thang cong này.

a) Với mỗi x [1; 2], gọi S(x) là diện tích phần hình thang cong đã cho nằm giữa hai đường thẳng vuông góc với trục Ox tại điểm có hoành độ bằng 1 và x (H.4.5).

Cho h > 0 sao cho x + h < 2. So sánh hiệu S(x + h) – S(x) với diện tích hai hình chữ nhật MNPQ và MNEF (H.4.6). Từ đó suy ra \(0 \le \frac{{S\left( {x + h} \right) - S\left( x \right)}}{h} - {x^2} \le 2xh + {h^2}\).

b) Cho h < 0 sao cho x + h > 1. Tương tự phần a, đánh giá hiệu S(x) – S(x + h) và từ đó suy ra \(2xh + {h^2} \le \frac{{S\left( {x + h} \right) - S\left( x \right)}}{h} - {x^2} \le 0\).

c) Từ kết quả phần a và phần b, suy ra với mọi h ≠ 0, ta có \(\left| {\frac{{S\left( {x + h} \right) - S\left( x \right)}}{h} - {x^2}} \right| \le 2x\left| h \right| + {h^2}\).

Từ đó chứng minh S'(x) = x2, x (1; 2).

Người ta chứng minh được S'(1) = 1, S'(2) = 4, tức là S(x) là một nguyên hàm của x2 trên [1; 2].

d) Từ kết quả của phần c, ta có \(S\left( x \right) = \frac{{{x^3}}}{3} + C\). Sử dụng điều này với lưu ý S(1) = 0 và diện tích cần tính S = S(2), hãy tính S.

Gọi F(x) là một nguyên hàm tùy ý của f(x) = x2 trên [1; 2]. Hãy so sánh S và F(2) – F(1).

Xét hình thang cong giới hạn bởi đồ thị y = x^2, trục hoành và hai đường thẳng x = 1, x = 2. Ta muốn tính diện tích S của hình thang cong này. (ảnh 1)

Lời giải

a) Với h > 0, x + h < 2, kí hiệu SMNPQ và SMNEF lần lượt là diện tích các hình chữ nhật MNPQ và MNEF, ta có: SMNPQ ≤ S(x + h) – S(x) ≤ SMNEF

hay hx2 ≤ S(x + h) – S(x) ≤ h(x + h)2.

Suy ra \(0 \le \frac{{S\left( {x + h} \right) - S\left( x \right)}}{h} - {x^2} \le 2xh + {h^2}\).

b) Với h < 0 và x + h > 1, kí hiệu SMNPQ và SMNEF lần lượt là diện tích các hình chữ nhật MNPQ và MNEF, ta có SMNPQ ≤ S(x + h) – S(x) ≤ SMNEF

hay h(x+h)2 ≤ S(x + h) – S(x) ≤ hx2.

Suy ra \(2xh + {h^2} \le \frac{{S\left( {x + h} \right) - S\left( x \right)}}{h} - {x^2} \le 0\).

c) Dựa vào kết quả của câu a, b ta suy ra với mọi h ≠ 0, ta có:

 \(\left| {\frac{{S\left( {x + h} \right) - S\left( x \right)}}{h} - {x^2}} \right| \le 2x\left| h \right| + {h^2}\).

Suy ra \(S'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{S\left( {x + h} \right) - S\left( x \right)}}{h} = {x^2},\forall x \in \left( {1;2} \right)\).

d) Vì S(1) = 0 nên \(S\left( 1 \right) = \frac{{{1^3}}}{3} + C = 0 \Rightarrow C = - \frac{1}{3}\).

Vậy \(S\left( x \right) = \frac{{{x^3}}}{3} - \frac{1}{3}\).

Ta có \(S = S\left( 2 \right) = \frac{{{2^3}}}{3} - \frac{1}{3} = \frac{7}{3}\).

Giả sử \(F\left( x \right) = \frac{{{x^3}}}{3}\) là một nguyên hàm của f(x) = x2 trên [1; 2].

Khi đó \(F\left( 1 \right) = \frac{1}{3};F\left( 2 \right) = \frac{8}{3}\). Ta thấy \(F\left( 2 \right) - F\left( 1 \right) = \frac{7}{3} = S\).

Lời giải

Vì F(x) và G(x) là hai nguyên hàm của f(x) trên đoạn [a; b] nên tồn tại một hằng số C sao cho F(x) = G(x) + C.

Do đó F(b) – F(a) = G(b) + C – G(a) – C = G(b) – G(a).

Lời giải

a) \(\int\limits_0^1 {{e^x}dx} = \left. {{e^x}} \right|_0^1 = e - 1\).

b) \(\int\limits_1^e {\frac{1}{x}} dx = \left. {\ln \left| x \right|} \right|_1^e = \ln e - \ln 1 = 1\).

c) \(\int\limits_0^{\frac{\pi }{2}} {\sin xdx} = \left. { - \cos x} \right|_0^{\frac{\pi }{2}} = - \cos \frac{\pi }{2} + \cos 0 = 1.\)

d) \(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\frac{{dx}}{{{{\sin }^2}x}}} = \left. { - \cot x} \right|_{\frac{\pi }{6}}^{\frac{\pi }{3}} = - \cot \frac{\pi }{3} + \cot \frac{\pi }{6} = - \frac{{\sqrt 3 }}{3} + \sqrt 3 = \frac{{2\sqrt 3 }}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 10

Tính 032x3dx.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

91 Đánh giá

50%

40%

0%

0%

0%