Tính và so sánh:
a) \(\int\limits_0^1 {2xdx} \) và \(2\int\limits_0^1 {xdx} \);
b) \(\int\limits_0^1 {\left( {{x^2} + x} \right)dx} \) và \(\int\limits_0^1 {{x^2}dx} + \int\limits_0^1 {xdx} \);
c) \(\int\limits_0^3 {xdx} \) và \(\int\limits_0^1 {xdx} + \int\limits_1^3 {xdx} \).
Tính và so sánh:
a) \(\int\limits_0^1 {2xdx} \) và \(2\int\limits_0^1 {xdx} \);
b) \(\int\limits_0^1 {\left( {{x^2} + x} \right)dx} \) và \(\int\limits_0^1 {{x^2}dx} + \int\limits_0^1 {xdx} \);
c) \(\int\limits_0^3 {xdx} \) và \(\int\limits_0^1 {xdx} + \int\limits_1^3 {xdx} \).
Câu hỏi trong đề: Giải SGK Toán 12 KNTT Bài 12. Tích phân có đáp án !!
Quảng cáo
Trả lời:
a) \(\int\limits_0^1 {2xdx} = \left. {{x^2}} \right|_0^1 = 1;\)\(2\int\limits_0^1 {xdx} = \left. {2.\frac{{{x^2}}}{2}} \right|_0^1 = \left. {{x^2}} \right|_0^1 = 1\).
Do đó \(\int\limits_0^1 {2xdx} = 2\int\limits_0^1 {xdx} \).
b) \(\int\limits_0^1 {\left( {{x^2} + x} \right)dx} = \left. {\left( {\frac{{{x^3}}}{3} + \frac{{{x^2}}}{2}} \right)} \right|_0^1 = \frac{5}{6}\).
\(\int\limits_0^1 {{x^2}dx} + \int\limits_0^1 {xdx} = \left. {\frac{{{x^3}}}{3}} \right|_0^1 + \left. {\frac{{{x^2}}}{2}} \right|_0^1 = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}\).
Do đó \(\int\limits_0^1 {\left( {{x^2} + x} \right)dx} = \int\limits_0^1 {{x^2}dx} + \int\limits_0^1 {xdx} \).
c) \(\int\limits_0^3 {xdx} = \left. {\frac{{{x^2}}}{2}} \right|_0^3 = \frac{9}{2}\); \(\int\limits_0^1 {xdx} + \int\limits_1^3 {xdx} \)\( = \left. {\frac{{{x^2}}}{2}} \right|_0^1 + \left. {\frac{{{x^2}}}{2}} \right|_1^3 = \frac{1}{2} + \frac{9}{2} - \frac{1}{2} = \frac{9}{2}\).
Do đó \(\int\limits_0^3 {xdx} = \int\limits_0^1 {xdx} + \int\limits_1^3 {xdx} \).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sự thay đổi của lợi nhuận khi doanh số tăng từ 100 lên 101 sản phẩm là:
\(\int\limits_{100}^{101} {P'\left( x \right)} dx = \int\limits_{100}^{101} {\left( { - 0,0005x + 12,2} \right)} dx\)\( = \left. {\left( { - \frac{1}{{4000}}{x^2} + 12,2x} \right)} \right|_{100}^{101}\)
= 1229,64975 – 1217,5 = 12,14975 triệu đồng.
b) Sự thay đổi của lợi nhuận khi doanh số tăng từ 100 lên 110 sản phẩm là
\(\int\limits_{100}^{110} {P'\left( x \right)} dx = \int\limits_{100}^{110} {\left( { - 0,0005x + 12,2} \right)} dx\)\( = \left. {\left( { - \frac{1}{{4000}}{x^2} + 12,2x} \right)} \right|_{100}^{110}\)
= 1338,975 – 1217,5 = 121,475 triệu đồng.
Lời giải
a) Độ dịch chuyển của vật trong khoảng thời gian 1 ≤ t ≤ 4 là
\(\int\limits_1^4 {v\left( t \right)} dt = \int\limits_1^4 {\left( {{t^2} - t - 6} \right)} dt\)\( = \int\limits_1^4 {{t^2}} dt - \int\limits_1^4 t dt - 6\int\limits_1^4 {dt} \)\( = \left. {\left( {\frac{{{t^3}}}{3} - \frac{{{t^2}}}{2} - 6t} \right)} \right|_1^4\)\( = - \frac{{32}}{3} + \frac{{37}}{6} = - \frac{9}{2}\).
b) Tổng quãng đường vật đi được trong khoảng thời gian này là
\(\int\limits_1^4 {\left| {v\left( t \right)} \right|} dt\)\( = \int\limits_1^4 {\left| {{t^2} - t - 6} \right|} dt\)\( = \int\limits_1^3 {\left| {{t^2} - t - 6} \right|} dt + \int\limits_3^4 {\left| {{t^2} - t - 6} \right|} dt\)
\( = - \int\limits_1^3 {\left( {{t^2} - t - 6} \right)} dt + \int\limits_3^4 {\left( {{t^2} - t - 6} \right)} dt\)\( = - \left. {\left( {\frac{{{t^3}}}{3} - \frac{{{t^2}}}{2} - 6t} \right)} \right|_1^3 + \left. {\left( {\frac{{{t^3}}}{3} - \frac{{{t^2}}}{2} - 6t} \right)} \right|_3^4\)\( = \frac{{27}}{2} - \frac{{37}}{6} - \frac{{32}}{3} + \frac{{27}}{2} = \frac{{61}}{6}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.