Giải SBT Toán 12 Tập 2 KNTT Bài 12. Tích phân có đáp án
40 người thi tuần này 4.6 219 lượt thi 10 câu hỏi
🔥 Đề thi HOT:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Ta có tích phân cần tính chính là diện tích của hình thang OABC, có đáy lớn AB = 7, đáy nhỏ CO = 1, đường cao OA = 3.

Do đó, \(\int\limits_0^3 {\left( {2x + 1} \right)dx} \) = SOABC = \(\frac{1}{2}\left( {AB + CO} \right)OA = \frac{1}{2}\).(7 + 1).3 = 12.
b) Tích phân cần tích chính là diện tích của \(\frac{1}{4}\) hình tròn có tâm tại gốc tọa độ O và bán kính R = 4 (phần nằm ở góc phần tư thứ nhất của mặt phẳng tọa độ) như hình dưới đây.

Do đó, \(\int\limits_0^4 {\sqrt {16 - {x^2}} dx} \)= \(\frac{1}{4}.\pi {.4^2}\) = 4π.
Lời giải
a) \(\int\limits_0^5 {\left[ {2f\left( x \right) + 3g\left( x \right)} \right]} dx\) = \(2\int\limits_0^5 {f\left( x \right)dx} + 3\int\limits_0^5 {g\left( x \right)dx} \)
= 2.6 + 3.2 = 18.
b) \(\int\limits_0^5 {\left[ {2f\left( x \right) - 3g\left( x \right)} \right]} dx\) = \(2\int\limits_0^5 {f\left( x \right)dx} - 3\int\limits_0^5 {g\left( x \right)dx} \)
= 2.6 – 3.2 = 6.
Lời giải
a) \(\int\limits_0^1 {{{\left( {1 - 2x} \right)}^2}} dx\) = \(\int\limits_0^1 {\left( {1 - 4x + 4{x^2}} \right)} dx\)
= \(\left. {\left( {x - 2{x^2} + \frac{4}{3}{x^3}} \right)} \right|_0^1\)
= \(\frac{1}{3}\).
b) \(\int\limits_1^4 {\frac{{x - 2}}{{\sqrt x }}dx} \) = \(\int\limits_1^4 {\left( {\sqrt x - \frac{2}{{\sqrt x }}} \right)dx} \)
= \(\int\limits_1^4 {\left( {\sqrt x - 2.{x^{\frac{{ - 1}}{2}}}} \right)dx} \)
= \(\left. {\left( {\frac{2}{3}x\sqrt x - 4\sqrt x } \right)} \right|_1^4\)
= \(\frac{2}{3}\).
Lời giải
a) \(\int\limits_0^2 {\left| {2x - 1} \right|dx} \) = \(\int\limits_0^{\frac{1}{2}} {\left| {2x - 1} \right|dx} + \int\limits_{\frac{1}{2}}^2 {\left| {2x - 1} \right|dx} \)
= \(\int\limits_0^{\frac{1}{2}} {\left( {1 - 2x} \right)dx} + \int\limits_{\frac{1}{2}}^2 {\left( {2x - 1} \right)dx} \)
= \(\left. {\left( {x - {x^2}} \right)} \right|_0^{\frac{1}{2}} + \left. {\left( {{x^2} - x} \right)} \right|_{\frac{1}{2}}^2\) = \(\frac{5}{2}\).
b) \(\int\limits_{ - 2}^3 {\left| {x - 1} \right|dx} \) = \(\int\limits_{ - 2}^1 {\left| {x - 1} \right|dx} + \int\limits_1^3 {\left| {x - 1} \right|dx} \)
= \(\int\limits_{ - 2}^1 {\left( {1 - x} \right)dx} + \int\limits_1^3 {\left( {x - 1} \right)dx} \)
= \(\left. {\left( {x - \frac{1}{2}{x^2}} \right)} \right|_{ - 2}^1 + \left. {\left( {\frac{1}{2}{x^2} - x} \right)} \right|_1^3\)
= 12 − \(\frac{1}{2}\).12 – (−2) + \(\frac{1}{2}\).(−2)2 + \(\frac{1}{2}\).32 – 3 − \(\frac{1}{2}\).12 + 1.
= \(\frac{{13}}{2}\).
Lời giải
a) \(\int\limits_0^{\frac{\pi }{2}} {\left( {3\cos x + 2\sin x} \right)dx} \) = \(\int\limits_0^{\frac{\pi }{2}} {3\cos xdx} + \int\limits_0^{\frac{\pi }{2}} {2\sin xdx} \)
= \(\left. {3\sin x} \right|_0^{^{\frac{\pi }{2}}} - \left. {2\cos x} \right|_0^{^{\frac{\pi }{2}}}\)
= \(3\sin \frac{\pi }{2} - 3\sin 0 - 2\cos \frac{\pi }{2} + 2\cos 0\)
= 5.
b) \(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{4}} {\left( {\frac{1}{{{{\cos }^2}x}} - \frac{1}{{{{\sin }^2}x}}} \right)dx} \) = \(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{4}} {\frac{1}{{{{\cos }^2}x}}dx} - \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{4}} {\frac{1}{{{{\sin }^2}x}}dx} \)
= \(\left. {\tan x} \right|_{_{\frac{\pi }{6}}}^{^{\frac{\pi }{4}}} - \left. {\cot x} \right|_{_{\frac{\pi }{6}}}^{^{\frac{\pi }{4}}}\)
= \(\tan \frac{\pi }{4} - \tan \frac{\pi }{6} - \cot \frac{\pi }{4} + \cot \frac{\pi }{6}\)
= 2 − \(\frac{{4\sqrt 3 }}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
44 Đánh giá
50%
40%
0%
0%
0%