Câu hỏi:
22/08/2024 215
Tính các tích phân sau:
a) \(\int\limits_0^{\frac{\pi }{2}} {\left( {3\cos x + 2\sin x} \right)dx} \);
b) \(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{4}} {\left( {\frac{1}{{{{\cos }^2}x}} - \frac{1}{{{{\sin }^2}x}}} \right)dx} \).
Tính các tích phân sau:
a) \(\int\limits_0^{\frac{\pi }{2}} {\left( {3\cos x + 2\sin x} \right)dx} \);
b) \(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{4}} {\left( {\frac{1}{{{{\cos }^2}x}} - \frac{1}{{{{\sin }^2}x}}} \right)dx} \).
Câu hỏi trong đề: Giải SBT Toán 12 Tập 2 KNTT Bài 12. Tích phân có đáp án !!
Quảng cáo
Trả lời:
a) \(\int\limits_0^{\frac{\pi }{2}} {\left( {3\cos x + 2\sin x} \right)dx} \) = \(\int\limits_0^{\frac{\pi }{2}} {3\cos xdx} + \int\limits_0^{\frac{\pi }{2}} {2\sin xdx} \)
= \(\left. {3\sin x} \right|_0^{^{\frac{\pi }{2}}} - \left. {2\cos x} \right|_0^{^{\frac{\pi }{2}}}\)
= \(3\sin \frac{\pi }{2} - 3\sin 0 - 2\cos \frac{\pi }{2} + 2\cos 0\)
= 5.
b) \(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{4}} {\left( {\frac{1}{{{{\cos }^2}x}} - \frac{1}{{{{\sin }^2}x}}} \right)dx} \) = \(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{4}} {\frac{1}{{{{\cos }^2}x}}dx} - \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{4}} {\frac{1}{{{{\sin }^2}x}}dx} \)
= \(\left. {\tan x} \right|_{_{\frac{\pi }{6}}}^{^{\frac{\pi }{4}}} - \left. {\cot x} \right|_{_{\frac{\pi }{6}}}^{^{\frac{\pi }{4}}}\)
= \(\tan \frac{\pi }{4} - \tan \frac{\pi }{6} - \cot \frac{\pi }{4} + \cot \frac{\pi }{6}\)
= 2 − \(\frac{{4\sqrt 3 }}{3}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chi phí trung bình trên mỗi đơn vị sản phẩm trong khoảng thời gian hai năm là:
\(\frac{1}{{24}}\int\limits_0^{24} {c\left( t \right)dt} \) = \(\frac{1}{{24}}\int\limits_0^{24} {\left( {0,005{t^2} + 0,02t + 12,5} \right)dt} \) = \(\left. {\frac{1}{{24}}\left( {0,005\frac{{{t^3}}}{3} + 0,01{t^2} + 12,5t} \right)} \right|_0^{24}\)= 13,7.
Lời giải
a) Tổng chi phí sau một năm là:
C = 5 000\(\left( {25 + 3\int\limits_0^1 {{t^{\frac{1}{4}}}} dt} \right)\) = 5 000\(\left( {25 + \left. {\frac{{12}}{5}{t^{\frac{5}{4}}}} \right|_0^1} \right)\) = 5 000\(\left( {25 + \frac{{12}}{5} - 0} \right)\) = 137 000.
b) Tổng chi phí sau 5 năm là:
C = 5 000\(\left( {25 + 3\int\limits_0^5 {{t^{\frac{1}{4}}}} dt} \right)\) = 5 000\(\left( {25 + \left. {\frac{{12}}{5}{t^{\frac{5}{4}}}} \right|_0^5} \right)\) = 5 000\(\left( {25 + \frac{{12}}{5}{5^{\frac{5}{4}}} - 0} \right)\) ≈ 214 720,93.
c) Tổng chi phí sau 10 năm là:
C = 5 000\(\left( {25 + 3\int\limits_0^{10} {{t^{\frac{1}{4}}}} dt} \right)\) = 5 000\(\left( {25 + \left. {\frac{{12}}{5}{t^{\frac{5}{4}}}} \right|_0^{10}} \right)\) = 5 000\(\left( {25 + \frac{{12}}{5}{{10}^{\frac{5}{4}}} - 0} \right)\) ≈ 338 393,53.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.