Câu hỏi:

22/08/2024 4,173

Lợi nhuận biên của một sản phẩm được mô hình hóa bởi

P'(x) = −0,0005x + 12,2.

a) Tìm sự thay đổi lợi nhuận khi doanh số bán hàng tăng từ 100 lên 101 đơn vị.

b) Tìm sự thay đổi lợi nhuận khi doanh số bán hàng tăng từ 100 lên 110 đơn vị.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Sự thay đổi lợi nhuận khi doanh số bán hàng tăng từ 100 lên 101 đơn vị là:

\(\int\limits_{100}^{101} {P'\left( x \right)dx} = \int\limits_{100}^{101} {\left( { - 0,0005x + 12,2} \right)dx} \) = \(\left. {\left( { - 0,0005.\frac{{{x^2}}}{2} + 12,2x} \right)} \right|_{100}^{101}\) = 12,14975.

b) Sự thay đổi lợi nhuận khi doanh số bán hàng tăng từ 100 lên 110 đơn vị là:

\(\int\limits_{100}^{110} {P'\left( x \right)dx} = \int\limits_{100}^{110} {\left( { - 0,0005x + 12,2} \right)dx} \) = \(\left. {\left( { - 0,0005.\frac{{{x^2}}}{2} + 12,2x} \right)} \right|_{100}^{110}\) = 121,475.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chi phí trung bình trên mỗi đơn vị sản phẩm trong khoảng thời gian hai năm là:

\(\frac{1}{{24}}\int\limits_0^{24} {c\left( t \right)dt} \) = \(\frac{1}{{24}}\int\limits_0^{24} {\left( {0,005{t^2} + 0,02t + 12,5} \right)dt} \) = \(\left. {\frac{1}{{24}}\left( {0,005\frac{{{t^3}}}{3} + 0,01{t^2} + 12,5t} \right)} \right|_0^{24}\)= 13,7.

Lời giải

a) Tổng chi phí sau một năm là:

C = 5 000\(\left( {25 + 3\int\limits_0^1 {{t^{\frac{1}{4}}}} dt} \right)\) = 5 000\(\left( {25 + \left. {\frac{{12}}{5}{t^{\frac{5}{4}}}} \right|_0^1} \right)\) = 5 000\(\left( {25 + \frac{{12}}{5} - 0} \right)\) = 137 000.

b) Tổng chi phí sau 5 năm là:

C = 5 000\(\left( {25 + 3\int\limits_0^5 {{t^{\frac{1}{4}}}} dt} \right)\) = 5 000\(\left( {25 + \left. {\frac{{12}}{5}{t^{\frac{5}{4}}}} \right|_0^5} \right)\) = 5 000\(\left( {25 + \frac{{12}}{5}{5^{\frac{5}{4}}} - 0} \right)\) ≈ 214 720,93.

c) Tổng chi phí sau 10 năm là:

C = 5 000\(\left( {25 + 3\int\limits_0^{10} {{t^{\frac{1}{4}}}} dt} \right)\) = 5 000\(\left( {25 + \left. {\frac{{12}}{5}{t^{\frac{5}{4}}}} \right|_0^{10}} \right)\) = 5 000\(\left( {25 + \frac{{12}}{5}{{10}^{\frac{5}{4}}} - 0} \right)\) ≈ 338 393,53.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay