Giải SBT Toán 12 Tập 2 KNTT Bài 17. Phương trình mặt cầu có đáp án
24 người thi tuần này 4.6 220 lượt thi 7 câu hỏi
🔥 Đề thi HOT:
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Gọi I(x; y; z) là trung điểm của AB, ta có:
\(\left\{ \begin{array}{l}x = \frac{{2 + 2}}{2} = 2\\y = \frac{{1 + 1}}{2} = 1\\z = \frac{{1 + 3}}{2} = 2\end{array} \right.\)⇒ I(2; 1; 2).
Mặt cầu đường kính AB có tâm là I(2; 1; 2) và bán kính R = IA.
IA = \(\sqrt {{{\left( {2 - 2} \right)}^2} + {{\left( {1 - 1} \right)}^2} + {{\left( {2 - 1} \right)}^2}} \) = 1.
Vậy phương trình mặt cầu đường kính AB là:
(x – 2)2 + (y – 1)2 + (z – 2)2 = 12.
⇔ (x – 2)2 + (y – 1)2 + (z – 2)2 = 1.
b) Mặt cầu (S) tâm O và đi qua A có bán kính R = OA.
OA = \(\sqrt {{{\left( {2 - 0} \right)}^2} + {{\left( {1 - 0} \right)}^2} + {{\left( {1 - 0} \right)}^2}} \)= \(\sqrt 6 \).
Vậy phương trình mặt cầu (S) là: (x – 0)2 + (y – 0)2 + (z – 0)2 = \({\left( {\sqrt 6 } \right)^2}\).
⇔ x2 + y2 + z2 = 6.
Lời giải
Do mặt cầu (S) tiếp xúc với mặt phẳng (P) nên R = d(I, (P)).
Ta có: R = d(I, (P)) = \(\frac{{\left| {2 + 2.( - 1) + 2.2 - 10} \right|}}{{\sqrt {{1^2} + {2^2} + {2^2}} }}\) = 2.
Vậy phương trình mặt cầu (S) là: (x – 2)2 + (y + 1)2 + (z – 2)2 = 22.
⇔ (x – 2)2 + (y + 1)2 + (z – 2)2 = 4.
Lời giải
a) Ta có (S): (x – 1)2 + y2 + (z + 2)2 = 9
⇔ (x – 1)2 + (y – 0)2 + (z – (−2))2 = 32.
Vậy mặt cầu (S) có tâm I(1; 0; −2) và bán kính R = 3.
b) Ta có: IA = \(\sqrt {{{\left( {2 - 1} \right)}^2} + {{\left( {2 - 0} \right)}^2} + {{\left( { - 1 + 2} \right)}^2}} \) = \(\sqrt 6 \) < 3.
Do đó, điểm A nằm trong mặt cầu (S).
Lời giải
a) Phương trình có các hệ số a = −1, b = 0, c = 2 và d = 2.
⇒ a2 + b2 + c2 – d = (−1)2 + 02 + 22 – 2 = 3 > 0.
Do đó, phương trình đã cho là phương trình mặt cầu, hơn nữa mặt cầu có tâm là
I(−1; 0; 2) và bán kính R = \(\sqrt 3 \).
b) Phương trình có các hệ số a = 1, b = −1, c = −1 và d = 7.
⇒ a2 + b2 + c2 – d = 12 + (−1)2 + (−1)2 – 7 = −4 < 0.
Do đó, phương trình đã cho không phải là phương trình mặt cầu.
c) Ta có: 3x2 + 3y2 + 3z2 + 12x – 6y + 6z + 2 = 0.
⇔ x2 + y2 + z2 + 4x – 2y + 2z + \(\frac{2}{3}\) = 0.
Phương trình có các hệ số: a = −2, b =1, c = −1 và d = \(\frac{2}{3}\).
⇒ a2 + b2 + c2 – d = (−2)2 + 12 + (−1)2 − \(\frac{2}{3}\) = \(\frac{{16}}{3}\) > 0.
Do đó, phương trình đã cho là phương trình mặt cầu có tâm I(−2; 1; −1) và R = \(\frac{{4\sqrt 3 }}{3}\).
Lời giải
Theo đề bài, tâm I thuộc trục Ox nên I(x; 0; 0).
(S) đi qua hai điểm A và B nên IA = IB.
⇒ (x – 1)2 + (0 – 2)2 + (0 – 1)2 = (x + 1)2 + (0 + 2)2 + (0 – 3)2
⇒ x2 – 2x + 6 = x2 + 2x + 14
⇔ x = −2.
Do đó, tâm I(−2; 0; 0) và bán kính IA = \(\sqrt {14} \).
Phương trình mặt cầu cần tìm là: (x + 2)2 + y2 + z2 = 14.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.