Giải SBT Toán 12 Tập 1 KNTT Bài 2. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số có đáp án
72 người thi tuần này 4.6 517 lượt thi 10 câu hỏi
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
175 câu Bài tập Số phức từ đề thi Đại học cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
191 câu Bài tập số phức mức độ cơ bản, nâng cao cực hay có lời giải chi tiết(P1)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Quan sát đồ thị, ta thấy:
Hàm số đạt giá trị lớn nhất tại điểm x8.
Hàm số đạt giá trị nhỏ nhất tại điểm x7.
Hàm số đạt cực đại tại điểm x6.
Hàm số đạt cực tiểu tại điểm x4 và x7.
Lời giải
a) y = 3x4 – 4x3
Tập xác định: D = ℝ.
Ta có: y' = 12x3 – 12x2
y' = 0 ⇔ 12x3 – 12x2 = 0 ⇔ x = 0 hoặc x = 1.

Từ bảng biến thiên, ta được \(\mathop {\min }\limits_\mathbb{R} y = y\left( 1 \right) = - 1\).
Hàn số không có giá trị lớn nhất.
b) \(y = \frac{{{x^2}}}{{x - 1}}\), x > 1
Tập xác định: D = (1; +∞).
Ta có: y' = \(\frac{{2x\left( {x - 1} \right) - {x^2}}}{{{{\left( {x - 1} \right)}^2}}}\) = \(\frac{{{x^2} - 2x}}{{{{\left( {x - 1} \right)}^2}}}\)
y' = 0 ⇔ \(\frac{{{x^2} - 2x}}{{{{\left( {x - 1} \right)}^2}}}\) = 0 ⇔ x = 2 hoặc x = 0.
Do x > 1 nên x = 0 loại.
Ta có bảng biến thiên như sau:

Từ bảng biến thiên, ta được: \(\mathop {\min }\limits_{\left( {1; + \infty } \right)} y = y\left( 2 \right) = 4\).
Hàm số không có giá trị lớn nhất trên khoảng (1; +∞).
Lời giải
a) y = −x3 + 3x2 + 2
Tập xác định: D = ℝ.
Ta có: y' = −3x2 + 6x
y' = 0 ⇔ −3x2 + 6x = 0 ⇔ x = 0 hoặc x = 2.
Ta có bảng biến thiên như sau:

Từ bảng biến thiên, ta thấy hàm số không có cả giá trị lớn nhất và giá trị nhỏ nhất.
b) \(y = \frac{x}{{{x^2} + 2}}\)
Tập xác định: D = ℝ.
Ta có: y' = \(\frac{{{x^2} + 2 - 2{x^2}}}{{{{\left( {{x^2} + 2} \right)}^2}}}\) = \(\frac{{2 - {x^2}}}{{{{\left( {{x^2} + 2} \right)}^2}}}\)
y' = 0 ⇔ \(\frac{{2 - {x^2}}}{{{{\left( {{x^2} + 2} \right)}^2}}}\) = 0 ⇔ x = ±\(\sqrt 2 \).
Ta có bảng biến thiên như sau:

Từ bảng biến thiên, ta được:
\(\mathop {\min }\limits_\mathbb{R} y = y\left( { - \sqrt 2 } \right) = - \frac{{\sqrt 2 }}{4}\); \(\mathop {\max }\limits_\mathbb{R} y = y\left( {\sqrt 2 } \right) = \frac{{\sqrt 2 }}{4}\).
Lời giải
a) \(f(x) = x\sqrt {4 - {x^2}} \), −2 ≤ x ≤ 2
Ta có: f'(x) = \(\sqrt {4 - {x^2}} + \frac{{ - {x^2}}}{{\sqrt {4 - {x^2}} }}\) = \(\frac{{4 - 2{x^2}}}{{\sqrt {4 - {x^2}} }}\);
f'(x) = 0 ⇔ x = ±\(\sqrt 2 \).
Ta tính được các giá trị: f(−2) = f(2) = 0; f(−\(\sqrt 2 \)) = −2; f(\(\sqrt 2 \)) = 2.
Do đó, \(\mathop {\min }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = f\left( { - \sqrt 2 } \right) = - 2\); \(\mathop {\max }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = f\left( {\sqrt 2 } \right) = 2\).
b) f(x) = x – cosx, \( - \frac{\pi }{2} \le x \le \frac{\pi }{2}\)
Ta có: f'(x) = 1 + sinx
f'(x) = 0 ⇔ 1 + sinx = 0 ⇔ x = \( - \frac{\pi }{2} + k2\pi \) (k ∈ ℤ).
Do \( - \frac{\pi }{2} \le x \le \frac{\pi }{2}\) nên x = \( - \frac{\pi }{2}\) (với k = 0).
Ta tính được các giá trị: \(f\left( {\frac{\pi }{2}} \right) = \frac{\pi }{2}\); \(f\left( { - \frac{\pi }{2}} \right) = \frac{\pi }{2}\).
Vậy \(\mathop {\min }\limits_{\left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]} f\left( x \right) = f\left( { - \frac{\pi }{2}} \right) = - \frac{\pi }{2}\), \(\mathop {\max }\limits_{\left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]} f\left( x \right) = f\left( {\frac{\pi }{2}} \right) = \frac{\pi }{2}\).
Lời giải
Xét x ∈ (0; 2), ta có: f(x) = 2x – 1
f'(x) = 2 > 0 với mọi x ∈ (0; 2).
Mặt khác, ta có: f(0) = −1, f(2) = 3.
Xét x ∈ (2; 3), ta có: f(x) = x2 – 5x + 9
f'(x) = 2x – 5
f'(x) = 0 ⇔ x = \(\frac{5}{2}\) (thỏa mãn).
Mặt khác, f\(\left( {\frac{5}{2}} \right)\) = \(\frac{{11}}{4}\); f(3) = 3.
Vậy \(\mathop {\min }\limits_{\left[ {0;3} \right]} f\left( x \right)\) = f(0) = −1; \(\mathop {\max }\limits_{\left[ {0;3} \right]} f\left( x \right)\) = f(2) = f(3) = 3.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


