Giải SGK Toán 12 KNTT Bài 18. Xác suất có điều kiện có đáp án

15 người thi tuần này 4.6 183 lượt thi 14 câu hỏi

Đề thi liên quan:

Danh sách câu hỏi:

Câu 8:

Trở lại trò chơi “Ô cửa bí mật” trong tình huống mở đầu. Giả sử người chơi chọn cửa số 1 và người quản trò mở cửa số 3.

Kí hiệu E1; E2; E3 tương ứng là các biến cố: “Sau ô cửa số 1 có ô tô”; “Sau ô cửa số 2 có ô tô”; “Sau ô cửa số 3 có ô tô” và H là biến cố: “Người quản trò mở ô cửa số 3 thấy con lừa”.

Sau khi người quản trò mở cánh cửa số 3 thấy con lừa, tức là khi H xảy ra. Để quyết định thay đổi lựa chọn hay không, người chơi cần so sánh hai xác suất có điều kiện: P(E1 | H) và P(E2 | H).

a) Chứng minh rằng:

Ÿ P(E1) = P(E2) = P(E3) = 13;

Ÿ P(H | E1) = 12 và P(H | E2) = 1.

b) Sử dụng công thức tính xác suất có điều kiện và công thức nhân xác suất, chứng minh rằng:

          Ÿ P(E1 | H) = PE1PH|E1PH;

          Ÿ P(E2 | H) = PE2PH|E2PH.

c) Từ các kết quả trên hãy suy ra:

P(E2 | H) = 2P(E1 | H).

Từ đó hãy đưa ra lời khuyên cho người chơi: Nên giữ nguyên sự lựa chọn ban đầu hay chuyển sang cửa chưa mở còn lại?

Hướng dẫn: Nếu E1 xảy ra, tức là sau cửa số 1 có ô tô. Khi đó, sau cửa số 2 và 3 là con lừa. Người quản trò chọn ngẫu nhiên một trong hai cửa số 2 và 3 để mở ra. Do đó, việc chọn cửa số 2 hay cửa số 3 có khả năng như nhau. Vậy P(H | E1) = 12.

Nếu E2 xảy ra, tức là sau cửa số 2 có ô tô. Khi đó, người quản trò chắc chắn phải mở cửa số 3. Do đó, P(H | E2) = 1.


4.6

37 Đánh giá

50%

40%

0%

0%

0%