Giải SGK Toán 12 KNTT Bài 18. Xác suất có điều kiện có đáp án

234 người thi tuần này 4.6 692 lượt thi 14 câu hỏi

🔥 Đề thi HOT:

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

Cách 1: Bằng định nghĩa

Nếu B không xảy ra tức là Bình lấy được viên bi đen. Khi đó trong hộp còn lại 29 viên bi với 20 viên bi trắng và 9 viên bi đen. Vậy PA|B¯=2029.

Cách 2: Bằng công thức

Nếu B không xảy ra tức là Bình lấy được viên bi đen.

Bình có 10 cách chọn bi đen. An có 29 cách chọn từ 29 viên còn lại trong hộp.

Trở lại Ví dụ 1. Tính P(A/B ngang) bằng định nghĩa và bằng công thức.  (ảnh 1)

Lời giải

Vì A và B là hai biến cố độc lập nên các cặp biến cố A¯ và B; A A¯ cũng độc lập.

Theo định nghĩa PA¯|B xác suất của B¯ (tức là xác suất không xuất hiện của A) biết rằng biến cố B đã xảy ra. A¯, B độc lập nên việc xảy ra B không ảnh hưởng tới xác suất không xuất hiện của A.

Do đó PA¯|B=PA¯.

Tương tự PA|B¯ là xác suất của A biết rằng biến cố B không xảy ra. Vì A, B¯ độc lập nên vic không xảy ra B không ảnh hưởng tới xác suất xuất hiện của A. Do đó PA|B¯=PA.

Lời giải

Không gian mẫu W là tập hợp 4 000 bệnh nhân.

a) Gọi A là biến cố: “Bệnh nhân đó uống thuốc M” B là biến cố: “Bệnh nhân đó khỏi bệnh”.

Ta cần tính P(A | B).

Ta có B là tập hợp con của không gian mẫu gồm các bệnh nhân khỏi bệnh.

Ta có n(B) = 1 600 + 1 200 = 2 800 và PB=nBnΩ.

AB là biến cố: “Bệnh nhân đó uống thuốc M và khỏi bệnh”. AB là tập hợp con của không gian mẫu gồm các bệnh nhân uống thuốc M và khỏi bệnh.

Một công ty dược phẩm muốn so sánh tác dụng điều trị bệnh X của hai loại thuốc M và N (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 8

Trở lại trò chơi “Ô cửa bí mật” trong tình huống mở đầu. Giả sử người chơi chọn cửa số 1 và người quản trò mở cửa số 3.

Kí hiệu E1; E2; E3 tương ứng là các biến cố: “Sau ô cửa số 1 có ô tô”; “Sau ô cửa số 2 có ô tô”; “Sau ô cửa số 3 có ô tô” và H là biến cố: “Người quản trò mở ô cửa số 3 thấy con lừa”.

Sau khi người quản trò mở cánh cửa số 3 thấy con lừa, tức là khi H xảy ra. Để quyết định thay đổi lựa chọn hay không, người chơi cần so sánh hai xác suất có điều kiện: P(E1 | H) và P(E2 | H).

a) Chứng minh rằng:

Ÿ P(E1) = P(E2) = P(E3) = 13;

Ÿ P(H | E1) = 12 và P(H | E2) = 1.

b) Sử dụng công thức tính xác suất có điều kiện và công thức nhân xác suất, chứng minh rằng:

          Ÿ P(E1 | H) = PE1PH|E1PH;

          Ÿ P(E2 | H) = PE2PH|E2PH.

c) Từ các kết quả trên hãy suy ra:

P(E2 | H) = 2P(E1 | H).

Từ đó hãy đưa ra lời khuyên cho người chơi: Nên giữ nguyên sự lựa chọn ban đầu hay chuyển sang cửa chưa mở còn lại?

Hướng dẫn: Nếu E1 xảy ra, tức là sau cửa số 1 có ô tô. Khi đó, sau cửa số 2 và 3 là con lừa. Người quản trò chọn ngẫu nhiên một trong hai cửa số 2 và 3 để mở ra. Do đó, việc chọn cửa số 2 hay cửa số 3 có khả năng như nhau. Vậy P(H | E1) = 12.

Nếu E2 xảy ra, tức là sau cửa số 2 có ô tô. Khi đó, người quản trò chắc chắn phải mở cửa số 3. Do đó, P(H | E2) = 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

138 Đánh giá

50%

40%

0%

0%

0%