Giải SBT Toán 12 Tập 1 KNTT Bài 6. Vectơ trong không gian có đáp án
41 người thi tuần này 4.6 358 lượt thi 15 câu hỏi
🔥 Đề thi HOT:
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải

Cho hình chóp tứ giác S.ABCD. Trong các vectơ có điểm đầu và điểm cuối phân biệt thuộc tập {S, A, B, C, D}:
a) Những vectơ nào có điểm đầu là S?
b) Những vectơ nào có giá nằm trong mặt phẳng (SAB)?
c) Vectơ nào là vectơ đối của vectơ \(\overrightarrow {BC} \)?
Lời giải

a) Ta có tứ giác ACC'A' là hình bình hành nên AC // A'C', suy ra \(\overrightarrow {A'C'} \) cùng phương với vectơ \(\overrightarrow {AC} \).
Do đó, các vec tơ \(\overrightarrow {CA} \), \(\overrightarrow {A'C'} \) và \(\overrightarrow {C'A'} \) cũng cùng phương với \(\overrightarrow {AC} \).
Vectơ cùng phương với vectơ \(\overrightarrow {AC} \) là: \(\overrightarrow {CA} \), \(\overrightarrow {A'C'} \) và \(\overrightarrow {C'A'} \).
b) Tứ giác ABC'D' là hình bình hành nên \(\overrightarrow {AD'} = \overrightarrow {BC'} \).
c) Vectơ đối của vectơ \(\overrightarrow {AA'} \) là: \(\overrightarrow {A'A} \), \(\overrightarrow {B'B} \), \(\overrightarrow {C'C} \), \(\overrightarrow {D'D} \).
Lời giải

a) Ta có tam giác ABD vuông tại cân tại A và AB = AD = 1,
Suy ra \(\left| {\overrightarrow {BD} } \right|\) = BD = \(\sqrt {A{B^2} + A{D^2}} \)= \(\sqrt 2 \).
b) Tam giác CDD' vuông tại D có CD = AB = 1, DD' = AA' = 2.
Do đó, \(\left| {\overrightarrow {CD'} } \right|\) = CD' = \(\sqrt 5 \).
c) Do AB = AD = 1 nên đáy ABCD là hình vuông, suy ra AC = BD = \(\sqrt 2 \).
Tam giác ACC' vuông tại C, có AC = \(\sqrt 2 \) và CC' = 2.
Suy ra \(\left| {\overrightarrow {AC'} } \right|\) = AC' = \(\sqrt {C{{C'}^2} + A{C^2}} \) = \(\sqrt 6 \).
Lời giải
a) Ta có: \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} = \)\(\overrightarrow {AC} \) + \(\overrightarrow {CD} \) = \(\overrightarrow {AD} \) = \(\overrightarrow {AE} + \overrightarrow {ED} \) = \(\overrightarrow {AE} - \overrightarrow {DE} \).
Vậy \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} = \overrightarrow {AE} - \overrightarrow {DE} \).
b) Ta có: \(\overrightarrow {AB} + \overrightarrow {BD} = \overrightarrow {AD} = \overrightarrow {AE} + \overrightarrow {ED} \)
⇒ \(\overrightarrow {AB} + \overrightarrow {BD} = \overrightarrow {AE} + \overrightarrow {ED} \)
⇔ \(\overrightarrow {AB} - \overrightarrow {ED} = \overrightarrow {AE} - \overrightarrow {BD} \)
⇔ \(\overrightarrow {AB} + \overrightarrow {DE} = \overrightarrow {AE} - \overrightarrow {BD} \)
Vậy ta có đpcm.
c) Ta có: \(\overrightarrow {BC} + \overrightarrow {CD} = \overrightarrow {BD} = \overrightarrow {BE} + \overrightarrow {ED} \)
⇒ \(\overrightarrow {BC} + \overrightarrow {CD} = \overrightarrow {BE} + \overrightarrow {ED} \)
⇔ \(\overrightarrow {BC} - \overrightarrow {ED} = \overrightarrow {BE} - \overrightarrow {CD} \)
⇔ \(\overrightarrow {BC} + \overrightarrow {DE} = \overrightarrow {BE} - \overrightarrow {CD} \)
Vậy ta có đpcm.
Lời giải

a) Ta có: \(\overrightarrow {EF} = \overrightarrow {EA} + \overrightarrow {AD} + \overrightarrow {DF} \)
= −\(\overrightarrow {AE} \) + \(\overrightarrow {AD} \) − \(\overrightarrow {FD} \)
= \(\overrightarrow {AD} \)− \(\frac{1}{3}\overrightarrow {AB} \) − \(\frac{2}{3}\overrightarrow {CD} \).
Vậy \(\overrightarrow {EF} = \overrightarrow {AD} - \frac{1}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {CD} \).
b) Ta có: \(\overrightarrow {EF} = \overrightarrow {EB} + \overrightarrow {BC} + \overrightarrow {CF} \)
= \(\frac{2}{3}\overrightarrow {AB} + \overrightarrow {CB} + \frac{1}{3}\overrightarrow {CD} \).
Vậy \(\overrightarrow {EF} = \overrightarrow {BC} + \frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {CD} \).
c) Từ câu a và b, ta có:
\(3\overrightarrow {EF} = \left( {\overrightarrow {AD} - \frac{1}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {CD} } \right) + 2\left( {\frac{2}{3}\overrightarrow {AB} + \overrightarrow {CB} + \frac{1}{3}\overrightarrow {CD} } \right)\)
= \(\overrightarrow {AD} - \frac{1}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {CD} \) + \(\frac{4}{3}\overrightarrow {AB} + 2\overrightarrow {CB} + \frac{2}{3}\overrightarrow {CD} \)
= \(\overrightarrow {AD} \) + \(\left( { - \frac{1}{3}\overrightarrow {AB} + \frac{4}{3}\overrightarrow {AB} } \right)\) + \(\left( { - \frac{2}{3}\overrightarrow {CD} + \frac{2}{3}\overrightarrow {CD} } \right)\) + \(2\overrightarrow {CB} \)
= \(\overrightarrow {AD} \) + \(2\overrightarrow {CB} \) + \(\overrightarrow {AB} \)
⇒ \(\overrightarrow {EF} = \frac{1}{3}\overrightarrow {AD} + \frac{2}{3}\overrightarrow {BC} + \frac{1}{3}\overrightarrow {AB} \).
Vậy ta có đpcm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.