Câu hỏi:

22/08/2024 1,964

Cho hình lăng trụ đứng ABCD.A'B'C'D'. Biết rằng AA' = 2 và tứ giác ABCD là hình thoi có AB = 1 và \(\widehat {ABC}\) = 60°, hãy tính góc giữa các cặp vectơ sau và từ đó tính tích vô hướng của mỗi cặp vectơ đó:

a) \(\overrightarrow {AB} \)\(\overrightarrow {A'D'} \);

b) \(\overrightarrow {AA'} \)\(\overrightarrow {BD} \);

c) \(\overrightarrow {AB} \)\(\overrightarrow {A'C'} \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình lăng trụ đứng ABCD.A'B'C'D'. Biết rằng AA' = 2 và tứ giác ABCD là hình thoi có AB = 1 và góc ABC = 60°, hãy tính góc giữa các cặp vectơ sau và từ đó  (ảnh 1)

a) Ta có: \(\left( {\overrightarrow {AB} ,\overrightarrow {A'D'} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right) = \widehat {BAC} = 180^\circ  - 60^\circ  = 120^\circ \).

Do đó, \(\overrightarrow {AB} .\overrightarrow {A'D'}  = AB.A'D'.\cos \left( {\overrightarrow {AB} ,\overrightarrow {A'D'} } \right)\) = 1.1. cos120° = \( - \frac{1}{2}\).

b) Ta có: AA' vuông góc với mặt phẳng (ABCD) nên \(\left( {\overrightarrow {AA'} ,\overrightarrow {BD} } \right)\) = 90°.

Do đó, \(\overrightarrow {AA'} .\overrightarrow {BD} \) = AA'.BD.cos90° = 0.

c) Tam giác ABC có AB = BC = 1 và \(\widehat {ABC}\) = 60° nên tam giác ABC đều.

Do đó, \(\widehat {BAC}\) = 60° và AC = 1.

Ta có: \(\left( {\overrightarrow {AB} ,\overrightarrow {A'C'} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \widehat {BAC}\) = 60° và \(\overrightarrow {AB} .\overrightarrow {A'C'} \) = AB.A'C'.cos60° = 1.1.\(\frac{1}{2}\) = \(\frac{1}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình lập phương ABCD.A'B'C'D' có độ dài các cạnh bằng a. Tính các tích vô hướng sau theo a: a) vecto AC . vecto B'D';  (ảnh 1)

a) Do hai vectơ \(\overrightarrow {AC} \)\(\overrightarrow {B'D'} \) vuông góc với nhau nên \(\overrightarrow {AC} .\overrightarrow {B'D'} \) = 0

b) Ta có: \(\overrightarrow {BD} .\overrightarrow {B'C'} \) = \(\overrightarrow {BD} .\overrightarrow {BC} \) = BD.BD.cos45° = a.a\(\sqrt 2 \).cos45° = a2.

c) Ta có: \(\overrightarrow {A'B'} .\overrightarrow {AC'} \) = \(\overrightarrow {AB} .\overrightarrow {AC'} \)

                               = \(\overrightarrow {AB} .\left( {\overrightarrow {AA'} + \overrightarrow {AC} } \right)\)

                               = \(\overrightarrow {AB} .\overrightarrow {AA'} + \overrightarrow {AB} .\overrightarrow {AC} \)

                               = 0 + AB.AC.cos45° = a.a\(\sqrt 2 \).\(\frac{{\sqrt 2 }}{2}\) = a2.

Lời giải

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = AD = 1 và AA' = 2. Tính độ dài của các vectơ sau: a) vecto BD; b) vecto CD'; c) vecto AC'. (ảnh 1)

a) Ta có tam giác ABD vuông tại cân tại A và AB = AD = 1,

Suy ra \(\left| {\overrightarrow {BD} } \right|\) = BD = \(\sqrt {A{B^2} + A{D^2}} \)= \(\sqrt 2 \).

b) Tam giác CDD' vuông tại D có CD = AB = 1, DD' = AA' = 2.

Do đó, \(\left| {\overrightarrow {CD'} } \right|\) = CD' = \(\sqrt 5 \).

c) Do AB = AD = 1 nên đáy ABCD là hình vuông, suy ra AC = BD = \(\sqrt 2 \).

Tam giác ACC' vuông tại C, có AC = \(\sqrt 2 \) và CC' = 2.

Suy ra \(\left| {\overrightarrow {AC'} } \right|\) = AC' = \(\sqrt {C{{C'}^2} + A{C^2}} \) = \(\sqrt 6 \).