Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh BC, BD. Gọi E, F lần lượt là trọng tâm của các tam giác ABC, ABD. Chứng minh rằng:
a) \(\overrightarrow {EF} = \frac{2}{3}\overrightarrow {MN} \);
b) \(\overrightarrow {EF} = \frac{1}{3}\overrightarrow {CD} \).
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh BC, BD. Gọi E, F lần lượt là trọng tâm của các tam giác ABC, ABD. Chứng minh rằng:
a) \(\overrightarrow {EF} = \frac{2}{3}\overrightarrow {MN} \);
b) \(\overrightarrow {EF} = \frac{1}{3}\overrightarrow {CD} \).
Quảng cáo
Trả lời:

a) Xét tam giác AMN, ta có: AE = \(\frac{2}{3}\)AM, AF = \(\frac{2}{3}\)AN (E, F là trọng tâm tam giác ABC, ABD).
Theo định lí Thales đảo suy EF // MN và EF = \(\frac{2}{3}\)MN.
Vì \(\overrightarrow {EF} \) và \(\overrightarrow {MN} \) cùng hướng nên \(\overrightarrow {EF} = \frac{2}{3}\overrightarrow {MN} \).
b) Xét tam giác BCD, có M, N là trung điểm CB, DB nên MN là đường trung bình của tam giác.
Ta có: MN // CD và MN = \(\frac{1}{2}\)CD.
\(\overrightarrow {CD} \) và \(\overrightarrow {MN} \) cùng hướng nên \(\overrightarrow {MN} = \frac{1}{2}\overrightarrow {CD} \).
Do đó, \(\overrightarrow {EF} = \frac{2}{3}\overrightarrow {MN} = \frac{2}{3}.\frac{1}{2}\overrightarrow {CD} = \frac{1}{3}\overrightarrow {CD} \).
Vậy \(\overrightarrow {EF} = \frac{1}{3}\overrightarrow {CD} \).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Do hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {B'D'} \) vuông góc với nhau nên \(\overrightarrow {AC} .\overrightarrow {B'D'} \) = 0
b) Ta có: \(\overrightarrow {BD} .\overrightarrow {B'C'} \) = \(\overrightarrow {BD} .\overrightarrow {BC} \) = BD.BD.cos45° = a.a\(\sqrt 2 \).cos45° = a2.
c) Ta có: \(\overrightarrow {A'B'} .\overrightarrow {AC'} \) = \(\overrightarrow {AB} .\overrightarrow {AC'} \)
= \(\overrightarrow {AB} .\left( {\overrightarrow {AA'} + \overrightarrow {AC} } \right)\)
= \(\overrightarrow {AB} .\overrightarrow {AA'} + \overrightarrow {AB} .\overrightarrow {AC} \)
= 0 + AB.AC.cos45° = a.a\(\sqrt 2 \).\(\frac{{\sqrt 2 }}{2}\) = a2.
Lời giải

a) Ta có tam giác ABD vuông tại cân tại A và AB = AD = 1,
Suy ra \(\left| {\overrightarrow {BD} } \right|\) = BD = \(\sqrt {A{B^2} + A{D^2}} \)= \(\sqrt 2 \).
b) Tam giác CDD' vuông tại D có CD = AB = 1, DD' = AA' = 2.
Do đó, \(\left| {\overrightarrow {CD'} } \right|\) = CD' = \(\sqrt 5 \).
c) Do AB = AD = 1 nên đáy ABCD là hình vuông, suy ra AC = BD = \(\sqrt 2 \).
Tam giác ACC' vuông tại C, có AC = \(\sqrt 2 \) và CC' = 2.
Suy ra \(\left| {\overrightarrow {AC'} } \right|\) = AC' = \(\sqrt {C{{C'}^2} + A{C^2}} \) = \(\sqrt 6 \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.