Câu hỏi:

22/08/2024 2,557

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh BC, BD. Gọi E, F lần lượt là trọng tâm của các tam giác ABC, ABD. Chứng minh rằng:

a) \(\overrightarrow {EF} = \frac{2}{3}\overrightarrow {MN} \);

b) \(\overrightarrow {EF} = \frac{1}{3}\overrightarrow {CD} \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh BC, BD. Gọi E, F lần lượt là trọng tâm của các tam giác ABC, ABD. Chứng minh rằng: (ảnh 1)

a) Xét tam giác AMN, ta có: AE = \(\frac{2}{3}\)AM, AF = \(\frac{2}{3}\)AN (E, F là trọng tâm tam giác ABC, ABD).

Theo định lí Thales đảo suy EF // MN và EF = \(\frac{2}{3}\)MN.

Vì \(\overrightarrow {EF} \) và \(\overrightarrow {MN} \) cùng hướng nên \(\overrightarrow {EF} = \frac{2}{3}\overrightarrow {MN} \).

b) Xét tam giác BCD, có M, N là trung điểm CB, DB nên MN là đường trung bình của tam giác.

Ta có: MN // CD và MN = \(\frac{1}{2}\)CD.

\(\overrightarrow {CD} \) và \(\overrightarrow {MN} \) cùng hướng nên \(\overrightarrow {MN} = \frac{1}{2}\overrightarrow {CD} \).

Do đó, \(\overrightarrow {EF} = \frac{2}{3}\overrightarrow {MN} = \frac{2}{3}.\frac{1}{2}\overrightarrow {CD} = \frac{1}{3}\overrightarrow {CD} \).

Vậy \(\overrightarrow {EF} = \frac{1}{3}\overrightarrow {CD} \).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình lập phương ABCD.A'B'C'D' có độ dài các cạnh bằng a. Tính các tích vô hướng sau theo a:

a) \(\overrightarrow {AC} .\overrightarrow {B'D'} \);

b) \(\overrightarrow {BD} .\overrightarrow {B'C'} \);

c) \(\overrightarrow {A'B'} .\overrightarrow {AC'} \).

Xem đáp án » 22/08/2024 11,556

Câu 2:

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = AD = 1 và AA' = 2. Tính độ dài của các vectơ sau:

a) \(\overrightarrow {BD} \);

b) \(\overrightarrow {CD'} \);

c) \(\overrightarrow {AC'} \).

Xem đáp án » 22/08/2024 10,544

Câu 3:

Cho hình hộp ABCD.A'B'C'D'. Trong các vectơ có điểm đầu và điểm cuối là hai đỉnh phân biệt của hình hộp:

a) Vectơ nào cùng phương với vectơ \(\overrightarrow {AC} \)?

b) Vectơ nào bằng vectơ \(\overrightarrow {AD'} \)?

c) Những vectơ nào là vectơ đối của vectơ \(\overrightarrow {AA'} \)?

Xem đáp án » 22/08/2024 8,066

Câu 4:

Trong không gian, cho hai vectơ \(\overrightarrow a \)\(\overrightarrow b \) thỏa mãn \(\left| {\overrightarrow a } \right|\) = 1, \(\left| {\overrightarrow b } \right|\) = 2 và \(\left( {\overrightarrow a ,\overrightarrow b } \right)\) = 45°. Tính các tích vô hướng sau:

a) \({\left( {\overrightarrow a + \overrightarrow b } \right)^2}\);

b) \(\left( {\overrightarrow a + \overrightarrow b } \right).\left( {\overrightarrow a - \overrightarrow b } \right)\);

c) \(\left( {2\overrightarrow a - \overrightarrow b } \right).\left( {\overrightarrow a + 3\overrightarrow b } \right)\).

Xem đáp án » 22/08/2024 7,619

Câu 5:

Cho hình hộp ABCD.A'B'C'D'. Đặt \(\overrightarrow {AA'} = \overrightarrow x \), \(\overrightarrow {AB} = \overrightarrow y \)\(\overrightarrow {AC} = \overrightarrow z \). Hãy biểu diễn các vectơ sau qua ba vectơ \(\overrightarrow x ,\overrightarrow y ,\overrightarrow z \):

a) \(\overrightarrow {AD} \);

b) \(\overrightarrow {AC'} \);

c) \(\overrightarrow {BD'} \).

Xem đáp án » 22/08/2024 4,290

Câu 6:

Cho tứ diện ABCD. Gọi E, F là các điểm lần lượt thuộc các cạnh AB, CD sao cho AE = \(\frac{1}{3}\)AB và CF = \(\frac{1}{3}\)CD. Chứng minh rằng:

a) \(\overrightarrow {EF} = \overrightarrow {AD} - \frac{1}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {CD} \);

b) \(\overrightarrow {EF} = \overrightarrow {BC} + \frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {CD} \);

c) \(\overrightarrow {EF} = \frac{1}{3}\overrightarrow {AD} + \frac{2}{3}\overrightarrow {BC} + \frac{1}{3}\overrightarrow {AB} \).

Xem đáp án » 22/08/2024 4,283
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua