Câu hỏi:

22/08/2024 6,766

Trong không gian, cho hai vectơ \(\overrightarrow a \)\(\overrightarrow b \) thỏa mãn \(\left| {\overrightarrow a } \right|\) = 1, \(\left| {\overrightarrow b } \right|\) = 2 và \(\left( {\overrightarrow a ,\overrightarrow b } \right)\) = 45°. Tính các tích vô hướng sau:

a) \({\left( {\overrightarrow a + \overrightarrow b } \right)^2}\);

b) \(\left( {\overrightarrow a + \overrightarrow b } \right).\left( {\overrightarrow a - \overrightarrow b } \right)\);

c) \(\left( {2\overrightarrow a - \overrightarrow b } \right).\left( {\overrightarrow a + 3\overrightarrow b } \right)\).

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có: \({\left( {\overrightarrow a + \overrightarrow b } \right)^2}\) = \({\overrightarrow a ^2} + 2\overrightarrow a \overrightarrow b + {\overrightarrow b ^2}\)= 12 + 22 + 2.1.2.cos45° = 5 + 2\(\sqrt 2 \).

b) Ta có: \(\left( {\overrightarrow a + \overrightarrow b } \right).\left( {\overrightarrow a - \overrightarrow b } \right)\)= \({\overrightarrow a ^2} - {\overrightarrow b ^2}\) = 12 – 22 = −3.

c) Ta có: \(\left( {2\overrightarrow a - \overrightarrow b } \right).\left( {\overrightarrow a + 3\overrightarrow b } \right)\) = \(2{\overrightarrow a ^2} - 3{\overrightarrow b ^2} + 5\overrightarrow a .\overrightarrow b \) = 2.12 – 3.22 + 5.1.2.cos45° = −10 + \(5\sqrt 2 \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình lập phương ABCD.A'B'C'D' có độ dài các cạnh bằng a. Tính các tích vô hướng sau theo a:

a) \(\overrightarrow {AC} .\overrightarrow {B'D'} \);

b) \(\overrightarrow {BD} .\overrightarrow {B'C'} \);

c) \(\overrightarrow {A'B'} .\overrightarrow {AC'} \).

Xem đáp án » 22/08/2024 9,014

Câu 2:

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = AD = 1 và AA' = 2. Tính độ dài của các vectơ sau:

a) \(\overrightarrow {BD} \);

b) \(\overrightarrow {CD'} \);

c) \(\overrightarrow {AC'} \).

Xem đáp án » 22/08/2024 8,788

Câu 3:

Cho hình hộp ABCD.A'B'C'D'. Trong các vectơ có điểm đầu và điểm cuối là hai đỉnh phân biệt của hình hộp:

a) Vectơ nào cùng phương với vectơ \(\overrightarrow {AC} \)?

b) Vectơ nào bằng vectơ \(\overrightarrow {AD'} \)?

c) Những vectơ nào là vectơ đối của vectơ \(\overrightarrow {AA'} \)?

Xem đáp án » 22/08/2024 7,055

Câu 4:

Cho tứ diện ABCD. Gọi E, F là các điểm lần lượt thuộc các cạnh AB, CD sao cho AE = \(\frac{1}{3}\)AB và CF = \(\frac{1}{3}\)CD. Chứng minh rằng:

a) \(\overrightarrow {EF} = \overrightarrow {AD} - \frac{1}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {CD} \);

b) \(\overrightarrow {EF} = \overrightarrow {BC} + \frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {CD} \);

c) \(\overrightarrow {EF} = \frac{1}{3}\overrightarrow {AD} + \frac{2}{3}\overrightarrow {BC} + \frac{1}{3}\overrightarrow {AB} \).

Xem đáp án » 22/08/2024 3,867

Câu 5:

Cho hình hộp ABCD.A'B'C'D'. Đặt \(\overrightarrow {AA'} = \overrightarrow x \), \(\overrightarrow {AB} = \overrightarrow y \)\(\overrightarrow {AC} = \overrightarrow z \). Hãy biểu diễn các vectơ sau qua ba vectơ \(\overrightarrow x ,\overrightarrow y ,\overrightarrow z \):

a) \(\overrightarrow {AD} \);

b) \(\overrightarrow {AC'} \);

c) \(\overrightarrow {BD'} \).

Xem đáp án » 22/08/2024 2,450

Câu 6:

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh BC, BD. Gọi E, F lần lượt là trọng tâm của các tam giác ABC, ABD. Chứng minh rằng:

a) \(\overrightarrow {EF} = \frac{2}{3}\overrightarrow {MN} \);

b) \(\overrightarrow {EF} = \frac{1}{3}\overrightarrow {CD} \).

Xem đáp án » 22/08/2024 2,415

Bình luận


Bình luận