Giải SBT Toán 12 Tập 1 KNTT Bài 7. Hệ trục tọa độ trong không gian có đáp án

32 người thi tuần này 4.6 232 lượt thi 9 câu hỏi

🔥 Đề thi HOT:

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

a) Không, do điểm A không nằm trong mặt phẳng (A'B'C'D').

b) Không, do hai mặt phẳng (ABCD) và (ABC'D') không vuông góc với nhau mà mặt phẳng (Oxy) và (Oyz) vuông với nhau.

c) Có thể chọn hệ trục Oxyz với gốc O trùng với đỉnh C, các tia Ox, Oy, Oz lần lượt trùng với các tia CB, CD, CC'.

Lời giải

a) Ta có: \(\overrightarrow 0 \) = (0; 0; 0) nên \(\overrightarrow {AB} \) = (0; 0; 0).

b) Ta có: \( - 2\overrightarrow k \) = −2(0; 0; 1) = (0; 0; −2) nên \(\overrightarrow {AB} \) = (0; 0; −2).

c) Ta có: \(3\overrightarrow i - 5\overrightarrow j + \overrightarrow k \) = (3; −5; 1) nên \(\overrightarrow {AB} \) = (3; −5; 1).

Lời giải

a) \(\overrightarrow {AB} \) = (2 – 4; 5 – 5; −1 – (−1)) = (−2; 0; 0) = −2\(\overrightarrow i \).

Suy ra \(\overrightarrow {AB} \) và \(\overrightarrow i \) là hai vectơ cùng phương.

Do đó đường thẳng AB (là giá của vectơ \(\overrightarrow {AB} \)) song song với trục Ox (là giá của vectơ \(\overrightarrow i \)).

b) Ta có: \(\overrightarrow {OC} \) = \(0\overrightarrow i + 0\overrightarrow j + 3\overrightarrow k \)= \(3\overrightarrow k \).

Suy ra vectơ \(\overrightarrow {OC} \) và vectơ \(\overrightarrow k \) cùng hướng.

Do đó điểm C thuộc tia Oz.

Lời giải

a) Có điểm O' thuộc tia Ox và OO' = 3 hay ta có: \(\overrightarrow {OO'} = 3\overrightarrow i \) = (3; 0; 0).

Vậy \(\overrightarrow {OO'} \) = (3; 0; 0).

b) Từ a, ta có O'(3; 0; 0).

Gọi tọa độ điểm A'(x1; y1; z1), B'(x2; y2; z2)

OAB.O'A'B' là lăng trụ tam giác nên \(\overrightarrow {OO'} \) = \(\overrightarrow {AA'} \) = \(\overrightarrow {BB'} \)

Do đó, ta có: \(\left\{ \begin{array}{l}{x_1} - 1 = 3\\{y_1} - 1 = 0\\{z_1} - 7 = 0\end{array} \right.\) \(\left\{ \begin{array}{l}{x_1} = 4\\{y_1} = 1\\{z_1} = 7\end{array} \right.\) A'(4; 1; 7).

                     \(\left\{ \begin{array}{l}{x_2} - 2 = 3\\{y_2} - 4 = 0\\{z_2} - 7 = 0\end{array} \right.\) \(\left\{ \begin{array}{l}{x_2} = 5\\{y_2} = 4\\{z_2} = 7\end{array} \right.\) B'(5; 4; 7).

4.6

46 Đánh giá

50%

40%

0%

0%

0%