Giải SBT Toán 12 Tập 1 KNTT Bài 7. Hệ trục tọa độ trong không gian có đáp án
34 người thi tuần này 4.6 317 lượt thi 9 câu hỏi
🔥 Đề thi HOT:
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Không, do điểm A không nằm trong mặt phẳng (A'B'C'D').
b) Không, do hai mặt phẳng (ABCD) và (ABC'D') không vuông góc với nhau mà mặt phẳng (Oxy) và (Oyz) vuông với nhau.
c) Có thể chọn hệ trục Oxyz với gốc O trùng với đỉnh C, các tia Ox, Oy, Oz lần lượt trùng với các tia CB, CD, CC'.
Lời giải
a) Tọa độ điểm A thỏa mãn là: A(0; 3; 0).
b) Tọa độ điểm A thỏa mãn là: A(0; 0; −5).
c) Tọa độ điểm A thỏa mãn là: A(5; 8; 0).
Lời giải
a) Ta có: \(\overrightarrow 0 \) = (0; 0; 0) nên \(\overrightarrow {AB} \) = (0; 0; 0).
b) Ta có: \( - 2\overrightarrow k \) = −2(0; 0; 1) = (0; 0; −2) nên \(\overrightarrow {AB} \) = (0; 0; −2).
c) Ta có: \(3\overrightarrow i - 5\overrightarrow j + \overrightarrow k \) = (3; −5; 1) nên \(\overrightarrow {AB} \) = (3; −5; 1).
Lời giải
a) \(\overrightarrow {AB} \) = (2 – 4; 5 – 5; −1 – (−1)) = (−2; 0; 0) = −2\(\overrightarrow i \).
Suy ra \(\overrightarrow {AB} \) và \(\overrightarrow i \) là hai vectơ cùng phương.
Do đó đường thẳng AB (là giá của vectơ \(\overrightarrow {AB} \)) song song với trục Ox (là giá của vectơ \(\overrightarrow i \)).
b) Ta có: \(\overrightarrow {OC} \) = \(0\overrightarrow i + 0\overrightarrow j + 3\overrightarrow k \)= \(3\overrightarrow k \).
Suy ra vectơ \(\overrightarrow {OC} \) và vectơ \(\overrightarrow k \) cùng hướng.
Do đó điểm C thuộc tia Oz.
Lời giải
a) Có điểm O' thuộc tia Ox và OO' = 3 hay ta có: \(\overrightarrow {OO'} = 3\overrightarrow i \) = (3; 0; 0).
Vậy \(\overrightarrow {OO'} \) = (3; 0; 0).
b) Từ a, ta có O'(3; 0; 0).
Gọi tọa độ điểm A'(x1; y1; z1), B'(x2; y2; z2)
Có OAB.O'A'B' là lăng trụ tam giác nên \(\overrightarrow {OO'} \) = \(\overrightarrow {AA'} \) = \(\overrightarrow {BB'} \)
Do đó, ta có: \(\left\{ \begin{array}{l}{x_1} - 1 = 3\\{y_1} - 1 = 0\\{z_1} - 7 = 0\end{array} \right.\)⇔ \(\left\{ \begin{array}{l}{x_1} = 4\\{y_1} = 1\\{z_1} = 7\end{array} \right.\) ⇒ A'(4; 1; 7).
\(\left\{ \begin{array}{l}{x_2} - 2 = 3\\{y_2} - 4 = 0\\{z_2} - 7 = 0\end{array} \right.\)⇔ \(\left\{ \begin{array}{l}{x_2} = 5\\{y_2} = 4\\{z_2} = 7\end{array} \right.\) ⇒ B'(5; 4; 7).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.