Giải SGK Toán 12 KNTT Bài 15. Phương trình đường thẳng trong không gian có đáp án
25 người thi tuần này 4.6 804 lượt thi 29 câu hỏi
🔥 Đề thi HOT:
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
20 câu Trắc nghiệm Toán 12 Kết nối tri thức Bài 1: Tính đơn điệu và cực trị của hàm số có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Sau khi học xong bài này, ta giải quyết bài toán này như sau:
Ta có \(\overrightarrow {MN} = \left( { - 3; - 3;12} \right) = - 3\left( {1;1; - 4} \right)\)
Đường thẳng MN đi qua điểm M(2; 3; −4) và có một vectơ chỉ phương \(\overrightarrow u = \left( {1;1; - 4} \right)\) có phương trình là: \(\left\{ \begin{array}{l}x = 2 + t\\y = 3 + t\\z = - 4 - 4t\end{array} \right.\).
Mặt phẳng Oxy có phương trình là z = 0.
Gọi D là giao điểm của đường thẳng MN với mặt phẳng Oxy nên tọa độ điểm D là nghiệm của hệ \(\left\{ \begin{array}{l}x = 2 + t\\y = 3 + t\\z = - 4 - 4t\\z = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\\z = 0\\t = - 1\end{array} \right.\). Vậy D(1; 2; 0).
Ta có \(MD = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 1} \right)}^2} + {4^2}} = \sqrt {18} \); \(MN = \sqrt {{{\left( { - 3} \right)}^2} + {{\left( { - 3} \right)}^2} + {{12}^2}} = \sqrt {162} \).
Vì MD < MN nên D nằm giữa M và N.
Vậy tấm bìa có che khuất tầm nhìn của người quan sát đối với vật đặt ở điểm N.
Lời giải
a) Trong không gian thì có vô số đường thẳng đi qua M và vuông góc với giá của nên khẳng định này sai.
b) Qua M có duy nhất một đường thẳng đi qua M và song song hoặc trùng với giá của cho trước. Do đó khẳng định này đúng.
Lời giải
Những vectơ chỉ phương của đường thẳng AB là: \(\overrightarrow {AB} ,\overrightarrow {BA} ,\overrightarrow {A'B'} ,\overrightarrow {B'A'} \).
Lời giải
a) Một vật thể chuyển động với vectơ vận tốc không đổi \(\overrightarrow u = \left( {a;b;c} \right) \ne \overrightarrow 0 \) và xuất phát từ điểm A(x0; y0; z0). Vectơ vận tốc này chính là vectơ chỉ phương của đường thẳng mà vật thể chuyển động.
Do đó đường thẳng này đi qua điểm A(x0; y0; z0) và có vectơ chỉ phương là \(\overrightarrow u = \left( {a;b;c} \right).\)
b) Ta có \(\overrightarrow {MA} = \left( {x - {x_0};y - {y_0};z - {z_0}} \right)\).
Khi đó ta có \(\overrightarrow {MA} \) cùng phương với \(\overrightarrow u \).
Suy ra \(\overrightarrow {MA} = t\overrightarrow u \)\( \Leftrightarrow \left\{ \begin{array}{l}x - {x_0} = ta\\y - {y_0} = tb\\z - {z_0} = tc\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = {x_0} + ta\\y = {y_0} + tb\\z = {z_0} + tc\end{array} \right.,t > 0\).
Lời giải
a) Ta có A(2; 0; 1), B(3; 3; 2) là các điểm thuộc ∆.
Có \(\overrightarrow u = \left( {1;3;1} \right)\) là một vectơ chỉ phương của ∆.
b) Phương trình tham số của đường thẳng đi qua gốc tọa độ O(0; 0; 0) và có vectơ chỉ phương \(\overrightarrow v = \left( {1;3;1} \right)\) là \(\left\{ \begin{array}{l}x = t\\y = 3t\\z = t\end{array} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.