Câu hỏi:
24/06/2024 701
Trong không gian Oxyz, cho hai đường thẳng ∆1, ∆2 tương ứng có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {{a_1};{b_1};{c_1}} \right),\overrightarrow {{u_2}} = \left( {{a_2};{b_2};{c_2}} \right)\).
a) Hai đường thẳng ∆1 và ∆2 vuông góc với nhau khi và chỉ khi hai giá của \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) có mối quan hệ gì?
b) Tìm điều kiện đối với \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) để ∆1 và ∆2 vuông góc với nhau.
Trong không gian Oxyz, cho hai đường thẳng ∆1, ∆2 tương ứng có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {{a_1};{b_1};{c_1}} \right),\overrightarrow {{u_2}} = \left( {{a_2};{b_2};{c_2}} \right)\).
a) Hai đường thẳng ∆1 và ∆2 vuông góc với nhau khi và chỉ khi hai giá của \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) có mối quan hệ gì?
b) Tìm điều kiện đối với \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) để ∆1 và ∆2 vuông góc với nhau.
Quảng cáo
Trả lời:
a) Hai đường thẳng ∆1 và ∆2 vuông góc với nhau khi và chỉ khi hai giá của \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) vuông góc với nhau. Tức là \(\overrightarrow {{u_1}} .\overrightarrow {{u_2}} = 0\)\( \Leftrightarrow {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = 0\).
b) Theo câu a, để ∆1 và ∆2 vuông góc với nhau thì \({a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = 0\).
Vậy để ∆1 và ∆2 vuông góc với nhau thì \(\overrightarrow {{u_1}} .\overrightarrow {{u_2}} = 0\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương trình mô tả quỹ đạo chuyển động của viên đạn là: \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 3 + t\\z = 4 + 6t\end{array} \right.\)
a) Thay tọa độ điểm M vào phương trình chuyển động, ta có:
\(\left\{ \begin{array}{l}7 = 1 + 2t\\\frac{7}{2} = 3 + t\\21 = 4 + 6t\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}t = 3\\t = \frac{1}{2}\\t = \frac{{17}}{6}\end{array} \right.\).
Ta thấy các giá trị t này đều khác nhau do đó điểm M không nằm trên quỹ đạo chuyển động của viên đạn nên viên đạn không bắn trúng mục tiêu đặt tại điểm M.
b) Thay tọa độ điểm N vào phương trình chuyển động của viên đạn ta có:
\(\left\{ \begin{array}{l} - 3 = 1 + 2t\\1 = 3 + t\\ - 8 = 4 + 6t\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}t = - 2\\t = - 2\\t = - 2\end{array} \right.\).
Suy ra điểm N nằm trên quỹ đạo chuyển động của viên đạn.
Do đó viên đạn trên có bắn trúng mục tiêu đặt tại điểm N.
Lời giải
a) Đường thẳng D1 đi qua A(1; 0; −1) có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {2; - 1;3} \right)\).
Đường thẳng D2 đi qua B(3; −1; 0) có vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( { - 1;1;1} \right)\).
Vì \(\overrightarrow {{u_1}} .\overrightarrow {{u_2}} = - 2 - 1 + 3 = 0\) nên hai đường thẳng D1 và D2 vuông góc với nhau.
b) Ta có \(\overrightarrow {AB} = \left( {2; - 1;1} \right)\), \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( { - 4; - 5;1} \right) \ne \overrightarrow 0 \).
\(\overrightarrow {AB} .\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = - 8 + 5 + 1 = - 2 \ne 0\).
Do đó D1 và D2 chéo nhau.
Vậy nút giao thông trên là nút giao thông khác mức.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.