Giải SBT Toán 12 Tập 2 KNTT Bài 16. Công thức tính góc trong không gian có đáp án
25 người thi tuần này 4.6 286 lượt thi 6 câu hỏi
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
10000 câu trắc nghiệm tổng hợp môn Toán 2025 mới nhất (có đáp án) - Phần 1
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Ta có: \(\overrightarrow {{u_\Delta }} \) = (1; −1; 2) và \(\overrightarrow {{u_{\Delta '}}} \) = (2; 1; 1) lần lượt là vectơ chỉ phương của đường thẳng ∆ và ∆'.
Do đó, cos\(\left( {\Delta ,\Delta '} \right)\) = \(\left| {\cos \left( {\overrightarrow {{u_\Delta }} ,\overrightarrow {{u_{\Delta '}}} } \right)} \right| = \frac{{\left| {\overrightarrow {{u_\Delta }} .\overrightarrow {{u_{\Delta '}}} } \right|}}{{\left| {\overrightarrow {{u_\Delta }} } \right|.\left| {\overrightarrow {{u_{\Delta '}}} } \right|}} = \frac{{\left| {1.2 + 1.( - 1) + 2.1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {2^2}} .\sqrt {{2^2} + {1^2} + {1^2}} }}\) = \(\frac{1}{2}\).
⇒ \(\left( {\Delta ,\Delta '} \right)\) = 60°.
Vậy góc giữa hai đường thẳng bằng 60°.
Lời giải
Ta có: \(\overrightarrow {{u_\Delta }} \) = (−2; 1; 2) là vectơ chỉ phương của đường thẳng d.
\(\overrightarrow {{n_P}} \) = (1; 2; −2) là vectơ pháp tuyến của mặt phẳng (P).
Do đó: sin\(\left( {\Delta ,\left( P \right)} \right)\) = \(\left| {\cos \left( {\overrightarrow {{u_\Delta }} ,\overrightarrow {{n_P}} } \right)} \right|\) = \(\frac{{\left| {\overrightarrow {{u_\Delta }} \overrightarrow {{n_P}} } \right|}}{{\left| {\overrightarrow {{u_\Delta }} } \right|.\left| {\overrightarrow {{n_P}} } \right|}} = \frac{{\left| { - 2.1 + 1.2 + 2.( - 2)} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {2^2}} .\sqrt {{2^2} + {1^2} + {{\left( { - 2} \right)}^2}} }}\) = \(\frac{4}{9}\)
⇒\(\left( {\Delta ,\left( P \right)} \right)\) ≈ 26,4°.
Lời giải
Ta có: \(\overrightarrow {{n_P}} \)= (2; −1; 2), \(\overrightarrow {{n_Q}} \) = (1; 1; −1) lần lượt là vectơ pháp tuyến của mặt phẳng (P) và (Q).
Do đó: cos\(\left( {\left( P \right),\left( Q \right)} \right)\) = \(\left| {\cos \left( {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } \right)} \right| = \frac{{\left| {\overrightarrow {{n_P}} .\overrightarrow {{n_Q}} } \right|}}{{\left| {\overrightarrow {{n_P}} } \right|.\left| {\overrightarrow {{n_Q}} } \right|}} = \frac{{\left| {2.1 + \left( { - 1} \right).1 + 2.\left( { - 1} \right)} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {2^2}} .\sqrt {{1^2} + {1^2} + \left( { - {1^2}} \right)} }}\)= \(\frac{{\sqrt 3 }}{9}\).
⇒ \(\left( {\left( P \right),\left( Q \right)} \right)\) ≈ 78,9°.
Lời giải
a) Ta có: \(\overrightarrow {{u_\Delta }} \) = (0; \(\sqrt 3 \); 1) là vectơ chỉ phương của đường thẳng ∆.
\(\overrightarrow k \) = (0; 0; 1) là vectơ pháp tuyến của mặt phẳng (Oxy).
Do đó, \(\sin \left( {\Delta ,\left( {Oxy} \right)} \right)\) = \(\left| {\cos \left( {\overrightarrow {{u_\Delta }} ,\overrightarrow k } \right)} \right|\) = \(\frac{{\left| {\overrightarrow {{u_\Delta }} .\overrightarrow k } \right|}}{{\left| {\overrightarrow {{u_\Delta }} } \right|.\left| {\overrightarrow k } \right|}} = \frac{{\left| {0.0 + \sqrt 3 .0 + 1.1} \right|}}{{\sqrt {{0^2} + {{\left( {\sqrt 3 } \right)}^2} + {1^2}} .\sqrt {{0^2} + {0^2} + {1^2}} }}\) = \(\frac{1}{2}\).
⇒ \(\left( {\Delta ,\left( {Oxy} \right)} \right)\) = 30°.
Lời giải
Trong khoảng thời gian ngắn đó, máy bay chuyển động trên đường thẳng ∆ đi qua A nhận \(\overrightarrow v \) = (1; 4; 1) làm vectơ chỉ phương. Phương trình đường thẳng ∆ là: \(\frac{x}{1} = \frac{{y - 2}}{4} = \frac{z}{1}\).
Một vectơ chỉ phương của trục Oy là \(\overrightarrow j \) = (0; 1; 0).
Ta có: cos(∆, Oy) = \(\frac{{\left| {\overrightarrow v .\overrightarrow j } \right|}}{{\left| {\overrightarrow v } \right|.\left| {\overrightarrow j } \right|}}\) = \(\frac{{\left| {1.0 + 4.1 + 1.0} \right|}}{{\sqrt {{1^2} + {4^2} + {1^2}} .\sqrt {{0^2} + {1^2} + {0^2}} }} = \frac{{2\sqrt 2 }}{3}\).
⇒ (∆, Oy) ≈ 19,5°.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
 Nhắn tin Zalo
 Nhắn tin Zalo