Câu hỏi:

21/08/2024 2,629

Trong không gian Oxyz, hai con đường tại một nút giao thông tương ứng thuộc hai đường thẳng:

1: \(\frac{{x - 2}}{1} = \frac{{y + 1}}{2} = \frac{z}{1}\) và ∆2: \(\frac{{x + 1}}{3} = \frac{{y - 2}}{1} = \frac{{z + 1}}{4}\).

a) Nút giao thông trên có phải là nút giao thông khác mức hay không?

b) Tại nút giao thông nói trên, hai con đường tạo với nhau một góc bằng bao nhiêu độ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đường thẳng ∆1 qua điểm A(2; −1; 0) và có vectơ chỉ phương \(\overrightarrow {{u_1}} \) = (1; 2; 1).

Đường thẳng ∆2 qua điểm B(−1; 2; −1) có vectơ chỉ phương \(\overrightarrow {{u_2}} \) = (3; 1; 4).

a) Ta có: \(\overrightarrow {AB} \) = (−3; 3; −1), \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right]\) = (7; −1; −5).

\(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {AB} \) = −19 ≠ 0.

Suy ra ∆1 và ∆2 chéo nhau.

Vậy nút giao thông đó là nút giao thông khác mức.

b) Ta có: cos(∆1, ∆2) = \(\frac{{\left| {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|}} = \frac{{\left| {1.3 + 2.1 + 1.4} \right|}}{{\sqrt {{1^2} + {2^2} + {1^2}} .\sqrt {{3^2} + {1^2} + {4^2}} }}\) = \(\frac{9}{{\sqrt {156} }}\).

(∆1, ∆2) ≈ 43,9°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \(\overrightarrow {{n_P}} \)= (2; −1; 2), \(\overrightarrow {{n_Q}} \) = (1; 1; −1) lần lượt là vectơ pháp tuyến của mặt phẳng (P) và (Q).

Do đó: cos\(\left( {\left( P \right),\left( Q \right)} \right)\) = \(\left| {\cos \left( {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } \right)} \right| = \frac{{\left| {\overrightarrow {{n_P}} .\overrightarrow {{n_Q}} } \right|}}{{\left| {\overrightarrow {{n_P}} } \right|.\left| {\overrightarrow {{n_Q}} } \right|}} = \frac{{\left| {2.1 + \left( { - 1} \right).1 + 2.\left( { - 1} \right)} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {2^2}} .\sqrt {{1^2} + {1^2} + \left( { - {1^2}} \right)} }}\)= \(\frac{{\sqrt 3 }}{9}\).

\(\left( {\left( P \right),\left( Q \right)} \right)\) ≈ 78,9°.

Lời giải

Trong khoảng thời gian ngắn đó, máy bay chuyển động trên đường thẳng ∆ đi qua A nhận \(\overrightarrow v \) = (1; 4; 1) làm vectơ chỉ phương. Phương trình đường thẳng ∆ là: \(\frac{x}{1} = \frac{{y - 2}}{4} = \frac{z}{1}\).

Một vectơ chỉ phương của trục Oy là \(\overrightarrow j \) = (0; 1; 0).

Ta có: cos(∆, Oy) = \(\frac{{\left| {\overrightarrow v .\overrightarrow j } \right|}}{{\left| {\overrightarrow v } \right|.\left| {\overrightarrow j } \right|}}\) = \(\frac{{\left| {1.0 + 4.1 + 1.0} \right|}}{{\sqrt {{1^2} + {4^2} + {1^2}} .\sqrt {{0^2} + {1^2} + {0^2}} }} = \frac{{2\sqrt 2 }}{3}\).

(∆, Oy) ≈ 19,5°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP