Câu hỏi:
21/08/2024 6,900
Trong không gian Oxyz, đường băng của một sân bay thuộc trục Oy.Một máy bay sau khi chạy đà trên đường băng đó đã cất cánh tại điểm A(0; 2; 0) với vận tốc không đổi trong khoảng thời gian ngắn ban đầu, vectơ vận tốc \(\overrightarrow v \) = (1; 4; 1). Hỏi trong khoảng thời gian ngắn nói trên, máy bay chuyển động trên đường thẳng nào và góc cất cánh của máy bay bằng bao nhiêu?
Trong không gian Oxyz, đường băng của một sân bay thuộc trục Oy.Một máy bay sau khi chạy đà trên đường băng đó đã cất cánh tại điểm A(0; 2; 0) với vận tốc không đổi trong khoảng thời gian ngắn ban đầu, vectơ vận tốc \(\overrightarrow v \) = (1; 4; 1). Hỏi trong khoảng thời gian ngắn nói trên, máy bay chuyển động trên đường thẳng nào và góc cất cánh của máy bay bằng bao nhiêu?
Quảng cáo
Trả lời:
Trong khoảng thời gian ngắn đó, máy bay chuyển động trên đường thẳng ∆ đi qua A nhận \(\overrightarrow v \) = (1; 4; 1) làm vectơ chỉ phương. Phương trình đường thẳng ∆ là: \(\frac{x}{1} = \frac{{y - 2}}{4} = \frac{z}{1}\).
Một vectơ chỉ phương của trục Oy là \(\overrightarrow j \) = (0; 1; 0).
Ta có: cos(∆, Oy) = \(\frac{{\left| {\overrightarrow v .\overrightarrow j } \right|}}{{\left| {\overrightarrow v } \right|.\left| {\overrightarrow j } \right|}}\) = \(\frac{{\left| {1.0 + 4.1 + 1.0} \right|}}{{\sqrt {{1^2} + {4^2} + {1^2}} .\sqrt {{0^2} + {1^2} + {0^2}} }} = \frac{{2\sqrt 2 }}{3}\).
⇒ (∆, Oy) ≈ 19,5°.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \(\overrightarrow {{n_P}} \)= (2; −1; 2), \(\overrightarrow {{n_Q}} \) = (1; 1; −1) lần lượt là vectơ pháp tuyến của mặt phẳng (P) và (Q).
Do đó: cos\(\left( {\left( P \right),\left( Q \right)} \right)\) = \(\left| {\cos \left( {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } \right)} \right| = \frac{{\left| {\overrightarrow {{n_P}} .\overrightarrow {{n_Q}} } \right|}}{{\left| {\overrightarrow {{n_P}} } \right|.\left| {\overrightarrow {{n_Q}} } \right|}} = \frac{{\left| {2.1 + \left( { - 1} \right).1 + 2.\left( { - 1} \right)} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {2^2}} .\sqrt {{1^2} + {1^2} + \left( { - {1^2}} \right)} }}\)= \(\frac{{\sqrt 3 }}{9}\).
⇒ \(\left( {\left( P \right),\left( Q \right)} \right)\) ≈ 78,9°.
Lời giải
Đường thẳng ∆1 qua điểm A(2; −1; 0) và có vectơ chỉ phương \(\overrightarrow {{u_1}} \) = (1; 2; 1).
Đường thẳng ∆2 qua điểm B(−1; 2; −1) có vectơ chỉ phương \(\overrightarrow {{u_2}} \) = (3; 1; 4).
a) Ta có: \(\overrightarrow {AB} \) = (−3; 3; −1), \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right]\) = (7; −1; −5).
⇒ \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {AB} \) = −19 ≠ 0.
Suy ra ∆1 và ∆2 chéo nhau.
Vậy nút giao thông đó là nút giao thông khác mức.
b) Ta có: cos(∆1, ∆2) = \(\frac{{\left| {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|}} = \frac{{\left| {1.3 + 2.1 + 1.4} \right|}}{{\sqrt {{1^2} + {2^2} + {1^2}} .\sqrt {{3^2} + {1^2} + {4^2}} }}\) = \(\frac{9}{{\sqrt {156} }}\).
⇒ (∆1, ∆2) ≈ 43,9°.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.