Giải SBT Toán 12 Tập 1 KNTT Bài 8. Biểu thức tọa độ của các phép toán vectơ có đáp án
29 người thi tuần này 4.6 319 lượt thi 8 câu hỏi
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
175 câu Bài tập Số phức từ đề thi Đại học cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
191 câu Bài tập số phức mức độ cơ bản, nâng cao cực hay có lời giải chi tiết(P1)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Ta có: \(\overrightarrow a - \overrightarrow b \) = (3 – 2;0 – 7;4 – 7) = (1; −7; −3).
Do đó, \(\overrightarrow a - \overrightarrow b + \overrightarrow c \) = (1 + 2; −7 + 7; −3 + 2) = (3; 0; −1).
Vậy \(\overrightarrow a - \overrightarrow b + \overrightarrow c \) = (3; 0; −1).
Ta có: 2\(\overrightarrow a \) = (6; 0; 8), \(3\overrightarrow b \) = (6; 21; 21), \(4\overrightarrow c \) = (8; 28; 8).
Do đó, \(2\overrightarrow a + 3\overrightarrow b - 4\overrightarrow c \) = (4; −7; 21).
b) Ta có: −\(\overrightarrow a \) = (−3; 0; −4).
Do đó, \(\left( { - \overrightarrow a } \right).\overrightarrow b \) = −3.2 + 0.7 + \(\left( { - 4} \right)\).7 = −34.
Ta có: 3\(\overrightarrow a \) = (9; 0; 12).
Do đó, \(\left( {3\overrightarrow a } \right)\).\(\overrightarrow c \) = 9.2 + 0.7 + 12.2 = 42.
c) Ta có: cos\(\left( {\overrightarrow a ,\overrightarrow b } \right)\) = \(\frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}}\) = \(\frac{{3.2 + 0.7 + 4.7}}{{\sqrt {{3^2} + {0^2} + {4^2}} .\sqrt {{2^2} + {7^2} + {7^2}} }}\) = \(\frac{{\sqrt {102} }}{{15}}\).
Ta có: cos\(\left( {\overrightarrow a ,\overrightarrow c } \right)\) = \(\frac{{\overrightarrow a .\overrightarrow c }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow c } \right|}}\) = \(\frac{{3.2 + 0.7 + 4.2}}{{\sqrt {{3^2} + {0^2} + {4^2}} .\sqrt {{2^2} + {7^2} + {2^2}} }}\) = \(\frac{{14}}{{5\sqrt {57} }}\).
Lời giải
a) Ta có: \(2\overrightarrow b \) = (2; 4; 6)
Suy ra \(\overrightarrow a - 2\overrightarrow b \) = (m – 2; 3 – 4; 6 – 6) = (m – 2; −1; 0).
Mà \(\overrightarrow a - 2\overrightarrow b \) = (3; −1; 0) = (m – 2; −1; 0).
Do đó, m – 2 = 3 hay m = 5.
b) Ta có: \(\overrightarrow a .\overrightarrow b \) = m.1 + 3.2 + 6.3 = m + 24 = 10
Suy ra m = −14.
c) Ta có: \(\left| {\overrightarrow a } \right|\) = \(\sqrt {{m^2} + {3^2} + {6^2}} = 9\)
⇒ \(\sqrt {{m^2} + 45} = 9\)
⇒ m2 + 45 = 81
⇒ m2 = 36
⇒ m = ±6.
Lời giải
a) Gọi I(x; y; z)
Ta có: I là trọng tâm tam giác ABC nên \(\left\{ \begin{array}{l}x = \frac{{1 + 2 + 6}}{3}\\y = \frac{{3 + 0 + 9}}{3}\\z = \frac{{ - 3 + 5 + ( - 5)}}{3}\end{array} \right.\) ⇔ \(\left\{ \begin{array}{l}x = 3\\y = 4\\z = - 1\end{array} \right.\).
Vậy I(3; 4; −1).
b) Gọi G(x0; y0; z0), theo đề ta có: DG = 3IG nên DG = \(\frac{3}{4}\)DI suy ra \[\overrightarrow {DG} = \frac{3}{4}\overrightarrow {DI} \].
Suy ra \(\left\{ \begin{array}{l}{x_0} + 1 = \frac{3}{4}.4\\{y_0} + 4 = \frac{3}{4}.8\\{z_0} - 3 = \frac{3}{4}.( - 4)\end{array} \right.\) ⇒ \(\left\{ \begin{array}{l}{x_0} = 2\\{y_0} = 2\\{z_0} = 0\end{array} \right.\).
Vậy G(2; 2; 0).
Lời giải
Ta có: \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \)
\(\overrightarrow {OA} - \overrightarrow {OG} + \overrightarrow {OB} - \overrightarrow {OG} + \overrightarrow {OC} - \overrightarrow {OG} + \overrightarrow {OD} - \overrightarrow {OG} = \overrightarrow 0 \)
\(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} - 4\overrightarrow {OG} = \overrightarrow 0 \)
\(\frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right) = \overrightarrow {OG} \)
Do đó, \(\overrightarrow {OG} = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right)\).
Vậy từ đây, với biểu thức tọa độ của phép cộng vectơ và phép nhân một số với một vectơ ta được:
xG = \(\frac{{{x_A} + {x_B} + {x_C} + {x_D}}}{4}\);
yG = \(\frac{{{y_A} + {y_B} + {y_C} + {y_D}}}{4}\);
zG = \(\frac{{{z_A} + {z_B} + {z_C} + {z_D}}}{4}\).
Lời giải
Ta có: AB = \(\sqrt {{{\left( {0 - 3} \right)}^2} + {{\left( {6 - 5} \right)}^2} + {{\left( {2 - 2} \right)}^2}} \) = \(\sqrt {10} \);
AC = \(\sqrt {{{\left( {3 - 2} \right)}^2} + {{\left( {5 - 3} \right)}^2} + {{\left( {2 - 6} \right)}^2}} \) = \(\sqrt {21} \);
BC = \(\sqrt {{{\left( {0 - 2} \right)}^2} + {{\left( {6 - 3} \right)}^2} + {{\left( {2 - 6} \right)}^2}} \) = \(\sqrt {29} \).
cos\(\widehat {BAC}\) = cos\(\left( {\overrightarrow {AC} ,\overrightarrow {AB} } \right)\) = \(\frac{{\overrightarrow {AC} .\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}}\) = \(\frac{{ - 3.( - 1) + 1.( - 2) + 0.4}}{{\sqrt {10} .\sqrt {21} }}\) = \(\frac{1}{{\sqrt {210} }}\).
Suy ra \(\widehat {BAC}\) ≈ 86°.
cos\(\widehat {ABC}\) = cos \(\left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right)\) = \(\frac{{\overrightarrow {BC} .\overrightarrow {BA} }}{{\left| {\overrightarrow {BA} } \right|.\left| {\overrightarrow {BC} } \right|}}\) = \(\frac{{3.2 + ( - 1).( - 3) + 0.4}}{{\sqrt {10} .\sqrt {29} }}\) = \(\frac{9}{{\sqrt {290} }}\).
Suy ra \(\widehat {ABC}\) ≈ 58°.
Từ đây, \(\widehat {ACB}\) = 180° − 86° − 58° = 36°.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.