Câu hỏi:

22/08/2024 2,895

Trong không gian Oxyz, cho tứ diện ABCD với A(1; 3; −3), B(2; 0; 5), C(6; 9; −5) và D(−1; −4; 3).

a) Tìm tọa độ trọng tâm I của tam giác ABC.

b) Tìm tọa độ của điểm G thuộc đoạn thẳng DI sao cho DG = 3IG.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Gọi I(x; y; z)

Ta có: I là trọng tâm tam giác ABC nên \(\left\{ \begin{array}{l}x = \frac{{1 + 2 + 6}}{3}\\y = \frac{{3 + 0 + 9}}{3}\\z = \frac{{ - 3 + 5 + ( - 5)}}{3}\end{array} \right.\) ⇔ \(\left\{ \begin{array}{l}x = 3\\y = 4\\z =  - 1\end{array} \right.\).

Vậy I(3; 4; −1).

b) Gọi G(x0; y0; z0), theo đề ta có: DG = 3IG nên DG = \(\frac{3}{4}\)DI suy ra \[\overrightarrow {DG}  = \frac{3}{4}\overrightarrow {DI} \].

Suy ra \(\left\{ \begin{array}{l}{x_0} + 1 = \frac{3}{4}.4\\{y_0} + 4 = \frac{3}{4}.8\\{z_0} - 3 = \frac{3}{4}.( - 4)\end{array} \right.\) ⇒ \(\left\{ \begin{array}{l}{x_0} = 2\\{y_0} = 2\\{z_0} = 0\end{array} \right.\).

Vậy G(2; 2; 0).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có: C'(0; 0; 0), D'(0; 1; 0), B'(1; 0; 0); C(0; 0; 1); D(0; 1; 1).

Ta có: \(\overrightarrow {CC'} = \overrightarrow {AA'} = \overrightarrow {BB'} = \overrightarrow {DD'} \) = (0; 0; −1).

Gọi B(x; y; z), ta có: \(\left\{ \begin{array}{l}1 - x = 0\\0 - y = 0\\0 - z = - 1\end{array} \right.\) \(\left\{ \begin{array}{l}x = 1\\y = 0\\z = 1\end{array} \right.\).

Vậy B(1; 0; 1).

Ta có: \(\overrightarrow {AB} = \overrightarrow {DC} \) A(1; 1; 1).

           \(\overrightarrow {CC'} = \overrightarrow {AA'} \) A' (1; 1; 0).

b) Gọi G(xG; yG; zG), ta có:

\(\left\{ \begin{array}{l}{x_G} = \frac{{1 + 0 + 0}}{3} = \frac{1}{3}\\{y_G} = \frac{{0 + 1 + 0}}{3} = \frac{1}{3}\\{z_G} = \frac{{0 + 0 + 1}}{3} = \frac{1}{3}\end{array} \right.\).

Vậy G\(\left( {\frac{1}{3};\frac{1}{3};\frac{1}{3}} \right)\).

c) Ta có: \(\overrightarrow {OG} = \left( {\frac{1}{3};\frac{1}{3};\frac{1}{3}} \right)\), \(\overrightarrow {OA} = (1;1;1).\)

\(\overrightarrow {OG} = \frac{1}{3}\overrightarrow {OA} \) nên ba điểm O, G, A thẳng hàng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP