Câu hỏi:

22/08/2024 1,267

Trong không gian Oxyz, cho tam giác ABC với A(3; 5; 2), B(0; 6; 2) và C(2; 3; 6). Hãy giải tam giác ABC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: AB = \(\sqrt {{{\left( {0 - 3} \right)}^2} + {{\left( {6 - 5} \right)}^2} + {{\left( {2 - 2} \right)}^2}} \) = \(\sqrt {10} \);

           AC = \(\sqrt {{{\left( {3 - 2} \right)}^2} + {{\left( {5 - 3} \right)}^2} + {{\left( {2 - 6} \right)}^2}} \) = \(\sqrt {21} \);

           BC = \(\sqrt {{{\left( {0 - 2} \right)}^2} + {{\left( {6 - 3} \right)}^2} + {{\left( {2 - 6} \right)}^2}} \) = \(\sqrt {29} \).

   cos\(\widehat {BAC}\) = cos\(\left( {\overrightarrow {AC} ,\overrightarrow {AB} } \right)\) = \(\frac{{\overrightarrow {AC} .\overrightarrow {AB} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}}\) = \(\frac{{ - 3.( - 1) + 1.( - 2) + 0.4}}{{\sqrt {10} .\sqrt {21} }}\) = \(\frac{1}{{\sqrt {210} }}\).

Suy ra \(\widehat {BAC}\) ≈ 86°.

    cos\(\widehat {ABC}\) = cos \(\left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right)\) = \(\frac{{\overrightarrow {BC} .\overrightarrow {BA} }}{{\left| {\overrightarrow {BA} } \right|.\left| {\overrightarrow {BC} } \right|}}\) = \(\frac{{3.2 + ( - 1).( - 3) + 0.4}}{{\sqrt {10} .\sqrt {29} }}\) = \(\frac{9}{{\sqrt {290} }}\).

Suy ra \(\widehat {ABC}\) ≈ 58°.

Từ đây, \(\widehat {ACB}\) = 180° − 86° − 58° = 36°.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có: C'(0; 0; 0), D'(0; 1; 0), B'(1; 0; 0); C(0; 0; 1); D(0; 1; 1).

Ta có: \(\overrightarrow {CC'} = \overrightarrow {AA'} = \overrightarrow {BB'} = \overrightarrow {DD'} \) = (0; 0; −1).

Gọi B(x; y; z), ta có: \(\left\{ \begin{array}{l}1 - x = 0\\0 - y = 0\\0 - z = - 1\end{array} \right.\) \(\left\{ \begin{array}{l}x = 1\\y = 0\\z = 1\end{array} \right.\).

Vậy B(1; 0; 1).

Ta có: \(\overrightarrow {AB} = \overrightarrow {DC} \) A(1; 1; 1).

           \(\overrightarrow {CC'} = \overrightarrow {AA'} \) A' (1; 1; 0).

b) Gọi G(xG; yG; zG), ta có:

\(\left\{ \begin{array}{l}{x_G} = \frac{{1 + 0 + 0}}{3} = \frac{1}{3}\\{y_G} = \frac{{0 + 1 + 0}}{3} = \frac{1}{3}\\{z_G} = \frac{{0 + 0 + 1}}{3} = \frac{1}{3}\end{array} \right.\).

Vậy G\(\left( {\frac{1}{3};\frac{1}{3};\frac{1}{3}} \right)\).

c) Ta có: \(\overrightarrow {OG} = \left( {\frac{1}{3};\frac{1}{3};\frac{1}{3}} \right)\), \(\overrightarrow {OA} = (1;1;1).\)

\(\overrightarrow {OG} = \frac{1}{3}\overrightarrow {OA} \) nên ba điểm O, G, A thẳng hàng.

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay