Cho hình lập phương ABCD.A'B'C'D' có độ dài mỗi cạnh bằng 1. Xét hệ tọa độ Oxyz gắn với hình lập phương như hình vẽ bên.
a) Tìm tọa độ các đỉnh của hình lập phương.
b) Tìm tọa độ trọng tâm G của tam giác B'CD'.
c) Chứng minh rằng ba điểm O, G, A thẳng hàng.
Cho hình lập phương ABCD.A'B'C'D' có độ dài mỗi cạnh bằng 1. Xét hệ tọa độ Oxyz gắn với hình lập phương như hình vẽ bên.

a) Tìm tọa độ các đỉnh của hình lập phương.
b) Tìm tọa độ trọng tâm G của tam giác B'CD'.
c) Chứng minh rằng ba điểm O, G, A thẳng hàng.
Quảng cáo
Trả lời:

a) Ta có: C'(0; 0; 0), D'(0; 1; 0), B'(1; 0; 0); C(0; 0; 1); D(0; 1; 1).
Ta có: \(\overrightarrow {CC'} = \overrightarrow {AA'} = \overrightarrow {BB'} = \overrightarrow {DD'} \) = (0; 0; −1).
Gọi B(x; y; z), ta có: \(\left\{ \begin{array}{l}1 - x = 0\\0 - y = 0\\0 - z = - 1\end{array} \right.\)⇔ \(\left\{ \begin{array}{l}x = 1\\y = 0\\z = 1\end{array} \right.\).
Vậy B(1; 0; 1).
Ta có: \(\overrightarrow {AB} = \overrightarrow {DC} \) ⇒ A(1; 1; 1).
\(\overrightarrow {CC'} = \overrightarrow {AA'} \)⇒ A' (1; 1; 0).
b) Gọi G(xG; yG; zG), ta có:
\(\left\{ \begin{array}{l}{x_G} = \frac{{1 + 0 + 0}}{3} = \frac{1}{3}\\{y_G} = \frac{{0 + 1 + 0}}{3} = \frac{1}{3}\\{z_G} = \frac{{0 + 0 + 1}}{3} = \frac{1}{3}\end{array} \right.\).
Vậy G\(\left( {\frac{1}{3};\frac{1}{3};\frac{1}{3}} \right)\).
c) Ta có: \(\overrightarrow {OG} = \left( {\frac{1}{3};\frac{1}{3};\frac{1}{3}} \right)\), \(\overrightarrow {OA} = (1;1;1).\)
Có \(\overrightarrow {OG} = \frac{1}{3}\overrightarrow {OA} \) nên ba điểm O, G, A thẳng hàng.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Chọn hệ trục Oxyz như hình bên.

Khi đó tọa độ của hai đầu dây A, B là A(3; 0; 1,2) và B(0; 1; 2).
b) Độ dài của sợi dây là:
AB = \(\sqrt {{{\left( {0 - 3} \right)}^2} + \left( {1 - 0} \right){}^2 + {{\left( {2 - 1,2} \right)}^2}} \) ≈ 3,26 (m).
Lời giải
a) Ta thấy đầu chiếc cột có độ cao 3 m có tọa độ là (8; 5; 3), đầu chiếc cột có độ cao 2 m có tọa độ là (3; 2; 2).
b) Khoảng cách giữa hai đầu sợi dây của chiếc cột là:
\(\sqrt {{{\left( {8 - 3} \right)}^2} + {{\left( {5 - 2} \right)}^2} + {{\left( {3 - 2} \right)}^2}} \) ≈ 5,92 (m).
Vậy sợi dây cần có độ dài tối thiểu 5,92 m.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.