Câu hỏi:

22/08/2024 4,168

Trên sân thể dục thầy giáo dựng hai chiếc cột vuông góc với mặt sân, chiều cao của mỗi chiếc cột lần lượt là 3 m và 2 m. Xét hệ tọa độ Oxyz sao cho mặt phẳng (Oxy) trùng với mặt sân, trục Oz hướng thẳng đứng lên trời. Đơn vị trong hệ tọa độ Oxyz được lấy theo mét.

Trên sân thể dục thầy giáo dựng hai chiếc cột vuông góc với mặt sân, chiều cao của mỗi chiếc cột lần lượt là 3 m và 2 m. Xét hệ tọa độ Oxyz sao cho mặt phẳng  (ảnh 1)

a) Biết rằng chân của hai cột đó có tọa độ lần lượt là (8; 5; 0) và (3; 2; 0), hãy tìm tọa độ điểm đầu của mỗi cột.

b) Thầy giáo dự định căng một sợi dây nối hai đầu của hai cột. Hỏi sợi dây cần có độ dài tối thiểu là khoảng bao nhiêu mét?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta thấy đầu chiếc cột có độ cao 3 m có tọa độ là (8; 5; 3), đầu chiếc cột có độ cao 2 m có tọa độ là (3; 2; 2).

b) Khoảng cách giữa hai đầu sợi dây của chiếc cột là:

\(\sqrt {{{\left( {8 - 3} \right)}^2} + {{\left( {5 - 2} \right)}^2} + {{\left( {3 - 2} \right)}^2}} \) ≈ 5,92 (m).

Vậy sợi dây cần có độ dài tối thiểu 5,92 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có: C'(0; 0; 0), D'(0; 1; 0), B'(1; 0; 0); C(0; 0; 1); D(0; 1; 1).

Ta có: \(\overrightarrow {CC'} = \overrightarrow {AA'} = \overrightarrow {BB'} = \overrightarrow {DD'} \) = (0; 0; −1).

Gọi B(x; y; z), ta có: \(\left\{ \begin{array}{l}1 - x = 0\\0 - y = 0\\0 - z = - 1\end{array} \right.\) \(\left\{ \begin{array}{l}x = 1\\y = 0\\z = 1\end{array} \right.\).

Vậy B(1; 0; 1).

Ta có: \(\overrightarrow {AB} = \overrightarrow {DC} \) A(1; 1; 1).

           \(\overrightarrow {CC'} = \overrightarrow {AA'} \) A' (1; 1; 0).

b) Gọi G(xG; yG; zG), ta có:

\(\left\{ \begin{array}{l}{x_G} = \frac{{1 + 0 + 0}}{3} = \frac{1}{3}\\{y_G} = \frac{{0 + 1 + 0}}{3} = \frac{1}{3}\\{z_G} = \frac{{0 + 0 + 1}}{3} = \frac{1}{3}\end{array} \right.\).

Vậy G\(\left( {\frac{1}{3};\frac{1}{3};\frac{1}{3}} \right)\).

c) Ta có: \(\overrightarrow {OG} = \left( {\frac{1}{3};\frac{1}{3};\frac{1}{3}} \right)\), \(\overrightarrow {OA} = (1;1;1).\)

\(\overrightarrow {OG} = \frac{1}{3}\overrightarrow {OA} \) nên ba điểm O, G, A thẳng hàng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP