Câu hỏi:
22/08/2024 4,168
Trên sân thể dục thầy giáo dựng hai chiếc cột vuông góc với mặt sân, chiều cao của mỗi chiếc cột lần lượt là 3 m và 2 m. Xét hệ tọa độ Oxyz sao cho mặt phẳng (Oxy) trùng với mặt sân, trục Oz hướng thẳng đứng lên trời. Đơn vị trong hệ tọa độ Oxyz được lấy theo mét.
a) Biết rằng chân của hai cột đó có tọa độ lần lượt là (8; 5; 0) và (3; 2; 0), hãy tìm tọa độ điểm đầu của mỗi cột.
b) Thầy giáo dự định căng một sợi dây nối hai đầu của hai cột. Hỏi sợi dây cần có độ dài tối thiểu là khoảng bao nhiêu mét?
Trên sân thể dục thầy giáo dựng hai chiếc cột vuông góc với mặt sân, chiều cao của mỗi chiếc cột lần lượt là 3 m và 2 m. Xét hệ tọa độ Oxyz sao cho mặt phẳng (Oxy) trùng với mặt sân, trục Oz hướng thẳng đứng lên trời. Đơn vị trong hệ tọa độ Oxyz được lấy theo mét.

a) Biết rằng chân của hai cột đó có tọa độ lần lượt là (8; 5; 0) và (3; 2; 0), hãy tìm tọa độ điểm đầu của mỗi cột.
b) Thầy giáo dự định căng một sợi dây nối hai đầu của hai cột. Hỏi sợi dây cần có độ dài tối thiểu là khoảng bao nhiêu mét?
Quảng cáo
Trả lời:
a) Ta thấy đầu chiếc cột có độ cao 3 m có tọa độ là (8; 5; 3), đầu chiếc cột có độ cao 2 m có tọa độ là (3; 2; 2).
b) Khoảng cách giữa hai đầu sợi dây của chiếc cột là:
\(\sqrt {{{\left( {8 - 3} \right)}^2} + {{\left( {5 - 2} \right)}^2} + {{\left( {3 - 2} \right)}^2}} \) ≈ 5,92 (m).
Vậy sợi dây cần có độ dài tối thiểu 5,92 m.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có: C'(0; 0; 0), D'(0; 1; 0), B'(1; 0; 0); C(0; 0; 1); D(0; 1; 1).
Ta có: \(\overrightarrow {CC'} = \overrightarrow {AA'} = \overrightarrow {BB'} = \overrightarrow {DD'} \) = (0; 0; −1).
Gọi B(x; y; z), ta có: \(\left\{ \begin{array}{l}1 - x = 0\\0 - y = 0\\0 - z = - 1\end{array} \right.\)⇔ \(\left\{ \begin{array}{l}x = 1\\y = 0\\z = 1\end{array} \right.\).
Vậy B(1; 0; 1).
Ta có: \(\overrightarrow {AB} = \overrightarrow {DC} \) ⇒ A(1; 1; 1).
\(\overrightarrow {CC'} = \overrightarrow {AA'} \)⇒ A' (1; 1; 0).
b) Gọi G(xG; yG; zG), ta có:
\(\left\{ \begin{array}{l}{x_G} = \frac{{1 + 0 + 0}}{3} = \frac{1}{3}\\{y_G} = \frac{{0 + 1 + 0}}{3} = \frac{1}{3}\\{z_G} = \frac{{0 + 0 + 1}}{3} = \frac{1}{3}\end{array} \right.\).
Vậy G\(\left( {\frac{1}{3};\frac{1}{3};\frac{1}{3}} \right)\).
c) Ta có: \(\overrightarrow {OG} = \left( {\frac{1}{3};\frac{1}{3};\frac{1}{3}} \right)\), \(\overrightarrow {OA} = (1;1;1).\)
Có \(\overrightarrow {OG} = \frac{1}{3}\overrightarrow {OA} \) nên ba điểm O, G, A thẳng hàng.
Lời giải
a) Chọn hệ trục Oxyz như hình bên.

Khi đó tọa độ của hai đầu dây A, B là A(3; 0; 1,2) và B(0; 1; 2).
b) Độ dài của sợi dây là:
AB = \(\sqrt {{{\left( {0 - 3} \right)}^2} + \left( {1 - 0} \right){}^2 + {{\left( {2 - 1,2} \right)}^2}} \) ≈ 3,26 (m).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.