Câu hỏi:
22/08/2024 1,148
Cho tứ diện ABCD. Trọng tâm G của tứ diện là điểm duy nhất thỏa mãn đẳng thức \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \). Chứng minh rằng tọa độ của điểm G được cho bởi công thức:
xG = \(\frac{{{x_A} + {x_B} + {x_C} + {x_D}}}{4}\);
yG = \(\frac{{{y_A} + {y_B} + {y_C} + {y_D}}}{4}\);
zG = \(\frac{{{z_A} + {z_B} + {z_C} + {z_D}}}{4}\).
Cho tứ diện ABCD. Trọng tâm G của tứ diện là điểm duy nhất thỏa mãn đẳng thức \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \). Chứng minh rằng tọa độ của điểm G được cho bởi công thức:
xG = \(\frac{{{x_A} + {x_B} + {x_C} + {x_D}}}{4}\);
yG = \(\frac{{{y_A} + {y_B} + {y_C} + {y_D}}}{4}\);
zG = \(\frac{{{z_A} + {z_B} + {z_C} + {z_D}}}{4}\).
Quảng cáo
Trả lời:
Ta có: \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \)
\(\overrightarrow {OA} - \overrightarrow {OG} + \overrightarrow {OB} - \overrightarrow {OG} + \overrightarrow {OC} - \overrightarrow {OG} + \overrightarrow {OD} - \overrightarrow {OG} = \overrightarrow 0 \)
\(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} - 4\overrightarrow {OG} = \overrightarrow 0 \)
\(\frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right) = \overrightarrow {OG} \)
Do đó, \(\overrightarrow {OG} = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right)\).
Vậy từ đây, với biểu thức tọa độ của phép cộng vectơ và phép nhân một số với một vectơ ta được:
xG = \(\frac{{{x_A} + {x_B} + {x_C} + {x_D}}}{4}\);
yG = \(\frac{{{y_A} + {y_B} + {y_C} + {y_D}}}{4}\);
zG = \(\frac{{{z_A} + {z_B} + {z_C} + {z_D}}}{4}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có: C'(0; 0; 0), D'(0; 1; 0), B'(1; 0; 0); C(0; 0; 1); D(0; 1; 1).
Ta có: \(\overrightarrow {CC'} = \overrightarrow {AA'} = \overrightarrow {BB'} = \overrightarrow {DD'} \) = (0; 0; −1).
Gọi B(x; y; z), ta có: \(\left\{ \begin{array}{l}1 - x = 0\\0 - y = 0\\0 - z = - 1\end{array} \right.\)⇔ \(\left\{ \begin{array}{l}x = 1\\y = 0\\z = 1\end{array} \right.\).
Vậy B(1; 0; 1).
Ta có: \(\overrightarrow {AB} = \overrightarrow {DC} \) ⇒ A(1; 1; 1).
\(\overrightarrow {CC'} = \overrightarrow {AA'} \)⇒ A' (1; 1; 0).
b) Gọi G(xG; yG; zG), ta có:
\(\left\{ \begin{array}{l}{x_G} = \frac{{1 + 0 + 0}}{3} = \frac{1}{3}\\{y_G} = \frac{{0 + 1 + 0}}{3} = \frac{1}{3}\\{z_G} = \frac{{0 + 0 + 1}}{3} = \frac{1}{3}\end{array} \right.\).
Vậy G\(\left( {\frac{1}{3};\frac{1}{3};\frac{1}{3}} \right)\).
c) Ta có: \(\overrightarrow {OG} = \left( {\frac{1}{3};\frac{1}{3};\frac{1}{3}} \right)\), \(\overrightarrow {OA} = (1;1;1).\)
Có \(\overrightarrow {OG} = \frac{1}{3}\overrightarrow {OA} \) nên ba điểm O, G, A thẳng hàng.
Lời giải
a) Chọn hệ trục Oxyz như hình bên.

Khi đó tọa độ của hai đầu dây A, B là A(3; 0; 1,2) và B(0; 1; 2).
b) Độ dài của sợi dây là:
AB = \(\sqrt {{{\left( {0 - 3} \right)}^2} + \left( {1 - 0} \right){}^2 + {{\left( {2 - 1,2} \right)}^2}} \) ≈ 3,26 (m).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.