Câu hỏi:
12/07/2024 6,625
Trong không gian Oxyz, một vật thể chuyển động với vectơ vận tốc không đổi và xuất phát từ điểm A(x0; y0; z0) (H.5.26).
a) Hỏi vật thể chuyển động trên đường thẳng nào (chỉ ra điểm mà nó đi qua và vectơ chỉ phương của đường thẳng đó)?
b) Giả sử tại thời điểm t (t > 0) tính từ khi xuất phát, vật thể ở vị trí M(x; y; z). Tính x, y, z theo a, b, c, x0, y0, z0 và t.
Trong không gian Oxyz, một vật thể chuyển động với vectơ vận tốc không đổi và xuất phát từ điểm A(x0; y0; z0) (H.5.26).
a) Hỏi vật thể chuyển động trên đường thẳng nào (chỉ ra điểm mà nó đi qua và vectơ chỉ phương của đường thẳng đó)?
b) Giả sử tại thời điểm t (t > 0) tính từ khi xuất phát, vật thể ở vị trí M(x; y; z). Tính x, y, z theo a, b, c, x0, y0, z0 và t.

Quảng cáo
Trả lời:
a) Một vật thể chuyển động với vectơ vận tốc không đổi \(\overrightarrow u = \left( {a;b;c} \right) \ne \overrightarrow 0 \) và xuất phát từ điểm A(x0; y0; z0). Vectơ vận tốc này chính là vectơ chỉ phương của đường thẳng mà vật thể chuyển động.
Do đó đường thẳng này đi qua điểm A(x0; y0; z0) và có vectơ chỉ phương là \(\overrightarrow u = \left( {a;b;c} \right).\)
b) Ta có \(\overrightarrow {MA} = \left( {x - {x_0};y - {y_0};z - {z_0}} \right)\).
Khi đó ta có \(\overrightarrow {MA} \) cùng phương với \(\overrightarrow u \).
Suy ra \(\overrightarrow {MA} = t\overrightarrow u \)\( \Leftrightarrow \left\{ \begin{array}{l}x - {x_0} = ta\\y - {y_0} = tb\\z - {z_0} = tc\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = {x_0} + ta\\y = {y_0} + tb\\z = {z_0} + tc\end{array} \right.,t > 0\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương trình mô tả quỹ đạo chuyển động của viên đạn là: \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 3 + t\\z = 4 + 6t\end{array} \right.\)
a) Thay tọa độ điểm M vào phương trình chuyển động, ta có:
\(\left\{ \begin{array}{l}7 = 1 + 2t\\\frac{7}{2} = 3 + t\\21 = 4 + 6t\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}t = 3\\t = \frac{1}{2}\\t = \frac{{17}}{6}\end{array} \right.\).
Ta thấy các giá trị t này đều khác nhau do đó điểm M không nằm trên quỹ đạo chuyển động của viên đạn nên viên đạn không bắn trúng mục tiêu đặt tại điểm M.
b) Thay tọa độ điểm N vào phương trình chuyển động của viên đạn ta có:
\(\left\{ \begin{array}{l} - 3 = 1 + 2t\\1 = 3 + t\\ - 8 = 4 + 6t\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}t = - 2\\t = - 2\\t = - 2\end{array} \right.\).
Suy ra điểm N nằm trên quỹ đạo chuyển động của viên đạn.
Do đó viên đạn trên có bắn trúng mục tiêu đặt tại điểm N.
Lời giải
a) Đường thẳng D1 đi qua A(1; 0; −1) có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {2; - 1;3} \right)\).
Đường thẳng D2 đi qua B(3; −1; 0) có vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( { - 1;1;1} \right)\).
Vì \(\overrightarrow {{u_1}} .\overrightarrow {{u_2}} = - 2 - 1 + 3 = 0\) nên hai đường thẳng D1 và D2 vuông góc với nhau.
b) Ta có \(\overrightarrow {AB} = \left( {2; - 1;1} \right)\), \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( { - 4; - 5;1} \right) \ne \overrightarrow 0 \).
\(\overrightarrow {AB} .\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = - 8 + 5 + 1 = - 2 \ne 0\).
Do đó D1 và D2 chéo nhau.
Vậy nút giao thông trên là nút giao thông khác mức.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.