Câu hỏi:
22/08/2024 1,160Trong không gian, cho hai hình bình hành ABCD và A'B'C'D'. Chứng minh rằng:
a) \(\overrightarrow {BB'} + \overrightarrow {DD'} = \overrightarrow {AB'} + \overrightarrow {AD'} - \overrightarrow {AB} - \overrightarrow {AD} \);
b) \(\overrightarrow {BB'} + \overrightarrow {DD'} = \overrightarrow {CC'} \).
Quảng cáo
Trả lời:
a) Ta có: \(\overrightarrow {BB'} = \overrightarrow {AB'} - \overrightarrow {AB} \) và \(\overrightarrow {DD'} = \overrightarrow {AD'} - \overrightarrow {AD} \).
Suy ra \(\overrightarrow {BB'} + \overrightarrow {DD'} = \overrightarrow {AB'} + \overrightarrow {AD'} - \overrightarrow {AB} - \overrightarrow {AD} \).
b) Vì tứ giác ABCD là hình bình hành nên \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \).
Vì tứ giác A'B'C'D' là hình bình hành nên \(\overrightarrow {AB'} + \overrightarrow {AD'} = \overrightarrow {AC'} \).
Kết hợp với câu a suy ra \(\overrightarrow {BB'} + \overrightarrow {DD'} = \overrightarrow {AB'} + \overrightarrow {AD'} - \overrightarrow {AB} - \overrightarrow {AD} = \overrightarrow {AC'} - \overrightarrow {AC} \) = \(\overrightarrow {CC'} \).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Do hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {B'D'} \) vuông góc với nhau nên \(\overrightarrow {AC} .\overrightarrow {B'D'} \) = 0
b) Ta có: \(\overrightarrow {BD} .\overrightarrow {B'C'} \) = \(\overrightarrow {BD} .\overrightarrow {BC} \) = BD.BD.cos45° = a.a\(\sqrt 2 \).cos45° = a2.
c) Ta có: \(\overrightarrow {A'B'} .\overrightarrow {AC'} \) = \(\overrightarrow {AB} .\overrightarrow {AC'} \)
= \(\overrightarrow {AB} .\left( {\overrightarrow {AA'} + \overrightarrow {AC} } \right)\)
= \(\overrightarrow {AB} .\overrightarrow {AA'} + \overrightarrow {AB} .\overrightarrow {AC} \)
= 0 + AB.AC.cos45° = a.a\(\sqrt 2 \).\(\frac{{\sqrt 2 }}{2}\) = a2.
Lời giải
a) Ta có tam giác ABD vuông tại cân tại A và AB = AD = 1,
Suy ra \(\left| {\overrightarrow {BD} } \right|\) = BD = \(\sqrt {A{B^2} + A{D^2}} \)= \(\sqrt 2 \).
b) Tam giác CDD' vuông tại D có CD = AB = 1, DD' = AA' = 2.
Do đó, \(\left| {\overrightarrow {CD'} } \right|\) = CD' = \(\sqrt 5 \).
c) Do AB = AD = 1 nên đáy ABCD là hình vuông, suy ra AC = BD = \(\sqrt 2 \).
Tam giác ACC' vuông tại C, có AC = \(\sqrt 2 \) và CC' = 2.
Suy ra \(\left| {\overrightarrow {AC'} } \right|\) = AC' = \(\sqrt {C{{C'}^2} + A{C^2}} \) = \(\sqrt 6 \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận