Câu hỏi:
22/08/2024 963Cho tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Gọi G là giao điểm của MP và NQ. Chứng minh rằng \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 .\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Vì MN là đường trung bình của tam giác ABC nên MN // AC và MN = \(\frac{1}{2}\)AC.
Vì PQ là đường trung bình của tam giác ADC nên NP // AC và NP = \(\frac{1}{2}\)AC.
Do dó, MN // AC và MNPQ là hình bình hành.
Theo đề bài, G là giao điểm của MNPQ là hình bình hành và G là giao điểm MP và NQ nên G là trung điểm của mỗi đoạn thẳng đó.
Ta có: \(\left( {\overrightarrow {GA} + \overrightarrow {GB} } \right) + \left( {\overrightarrow {GC} + \overrightarrow {GD} } \right)\) = \(2\overrightarrow {GM} + 2\overrightarrow {GP} \) = 2\(\left( {\overrightarrow {GM} + \overrightarrow {GP} } \right)\) = 2.\(\overrightarrow 0 \) = \(\overrightarrow 0 \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình lập phương ABCD.A'B'C'D' có độ dài các cạnh bằng a. Tính các tích vô hướng sau theo a:
a) \(\overrightarrow {AC} .\overrightarrow {B'D'} \);
b) \(\overrightarrow {BD} .\overrightarrow {B'C'} \);
c) \(\overrightarrow {A'B'} .\overrightarrow {AC'} \).
Câu 2:
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = AD = 1 và AA' = 2. Tính độ dài của các vectơ sau:
a) \(\overrightarrow {BD} \);
b) \(\overrightarrow {CD'} \);
c) \(\overrightarrow {AC'} \).
Câu 3:
Cho hình hộp ABCD.A'B'C'D'. Trong các vectơ có điểm đầu và điểm cuối là hai đỉnh phân biệt của hình hộp:
a) Vectơ nào cùng phương với vectơ \(\overrightarrow {AC} \)?
b) Vectơ nào bằng vectơ \(\overrightarrow {AD'} \)?
c) Những vectơ nào là vectơ đối của vectơ \(\overrightarrow {AA'} \)?
Câu 4:
Trong không gian, cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) thỏa mãn \(\left| {\overrightarrow a } \right|\) = 1, \(\left| {\overrightarrow b } \right|\) = 2 và \(\left( {\overrightarrow a ,\overrightarrow b } \right)\) = 45°. Tính các tích vô hướng sau:
a) \({\left( {\overrightarrow a + \overrightarrow b } \right)^2}\);
b) \(\left( {\overrightarrow a + \overrightarrow b } \right).\left( {\overrightarrow a - \overrightarrow b } \right)\);
c) \(\left( {2\overrightarrow a - \overrightarrow b } \right).\left( {\overrightarrow a + 3\overrightarrow b } \right)\).
Câu 5:
Cho tứ diện ABCD. Gọi E, F là các điểm lần lượt thuộc các cạnh AB, CD sao cho AE = \(\frac{1}{3}\)AB và CF = \(\frac{1}{3}\)CD. Chứng minh rằng:
a) \(\overrightarrow {EF} = \overrightarrow {AD} - \frac{1}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {CD} \);
b) \(\overrightarrow {EF} = \overrightarrow {BC} + \frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {CD} \);
c) \(\overrightarrow {EF} = \frac{1}{3}\overrightarrow {AD} + \frac{2}{3}\overrightarrow {BC} + \frac{1}{3}\overrightarrow {AB} \).
Câu 6:
Cho hình hộp ABCD.A'B'C'D'. Đặt \(\overrightarrow {AA'} = \overrightarrow x \), \(\overrightarrow {AB} = \overrightarrow y \) và \(\overrightarrow {AC} = \overrightarrow z \). Hãy biểu diễn các vectơ sau qua ba vectơ \(\overrightarrow x ,\overrightarrow y ,\overrightarrow z \):
a) \(\overrightarrow {AD} \);
b) \(\overrightarrow {AC'} \);
c) \(\overrightarrow {BD'} \).
Câu 7:
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh BC, BD. Gọi E, F lần lượt là trọng tâm của các tam giác ABC, ABD. Chứng minh rằng:
a) \(\overrightarrow {EF} = \frac{2}{3}\overrightarrow {MN} \);
b) \(\overrightarrow {EF} = \frac{1}{3}\overrightarrow {CD} \).
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận