Câu hỏi:

22/08/2024 1,225 Lưu

Trong không gian, cho năm điểm phân biệt A, B, C, D, E. Chứng minh rằng:

a) \(\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CD}  = \overrightarrow {AE}  - \overrightarrow {DE} \);

b) \(\overrightarrow {AB}  + \overrightarrow {DE}  = \overrightarrow {AE}  - \overrightarrow {BD} \);

c) \(\overrightarrow {BC}  + \overrightarrow {DE}  = \overrightarrow {BE}  - \overrightarrow {CD} \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có: \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} = \)\(\overrightarrow {AC} \) + \(\overrightarrow {CD} \) = \(\overrightarrow {AD} \) = \(\overrightarrow {AE} + \overrightarrow {ED} \) = \(\overrightarrow {AE} - \overrightarrow {DE} \).

Vậy \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} = \overrightarrow {AE} - \overrightarrow {DE} \).

b) Ta có: \(\overrightarrow {AB} + \overrightarrow {BD} = \overrightarrow {AD} = \overrightarrow {AE} + \overrightarrow {ED} \)

       \(\overrightarrow {AB} + \overrightarrow {BD} = \overrightarrow {AE} + \overrightarrow {ED} \)

     \(\overrightarrow {AB} - \overrightarrow {ED} = \overrightarrow {AE} - \overrightarrow {BD} \)

     \(\overrightarrow {AB} + \overrightarrow {DE} = \overrightarrow {AE} - \overrightarrow {BD} \)

Vậy ta có đpcm.

c) Ta có: \(\overrightarrow {BC} + \overrightarrow {CD} = \overrightarrow {BD} = \overrightarrow {BE} + \overrightarrow {ED} \)

           \(\overrightarrow {BC} + \overrightarrow {CD} = \overrightarrow {BE} + \overrightarrow {ED} \)

            \(\overrightarrow {BC} - \overrightarrow {ED} = \overrightarrow {BE} - \overrightarrow {CD} \)

           \(\overrightarrow {BC} + \overrightarrow {DE} = \overrightarrow {BE} - \overrightarrow {CD} \)

Vậy ta có đpcm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình lập phương ABCD.A'B'C'D' có độ dài các cạnh bằng a. Tính các tích vô hướng sau theo a: a) vecto AC . vecto B'D';  (ảnh 1)

a) Do hai vectơ \(\overrightarrow {AC} \)\(\overrightarrow {B'D'} \) vuông góc với nhau nên \(\overrightarrow {AC} .\overrightarrow {B'D'} \) = 0

b) Ta có: \(\overrightarrow {BD} .\overrightarrow {B'C'} \) = \(\overrightarrow {BD} .\overrightarrow {BC} \) = BD.BD.cos45° = a.a\(\sqrt 2 \).cos45° = a2.

c) Ta có: \(\overrightarrow {A'B'} .\overrightarrow {AC'} \) = \(\overrightarrow {AB} .\overrightarrow {AC'} \)

                               = \(\overrightarrow {AB} .\left( {\overrightarrow {AA'} + \overrightarrow {AC} } \right)\)

                               = \(\overrightarrow {AB} .\overrightarrow {AA'} + \overrightarrow {AB} .\overrightarrow {AC} \)

                               = 0 + AB.AC.cos45° = a.a\(\sqrt 2 \).\(\frac{{\sqrt 2 }}{2}\) = a2.

Lời giải

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = AD = 1 và AA' = 2. Tính độ dài của các vectơ sau: a) vecto BD; b) vecto CD'; c) vecto AC'. (ảnh 1)

a) Ta có tam giác ABD vuông tại cân tại A và AB = AD = 1,

Suy ra \(\left| {\overrightarrow {BD} } \right|\) = BD = \(\sqrt {A{B^2} + A{D^2}} \)= \(\sqrt 2 \).

b) Tam giác CDD' vuông tại D có CD = AB = 1, DD' = AA' = 2.

Do đó, \(\left| {\overrightarrow {CD'} } \right|\) = CD' = \(\sqrt 5 \).

c) Do AB = AD = 1 nên đáy ABCD là hình vuông, suy ra AC = BD = \(\sqrt 2 \).

Tam giác ACC' vuông tại C, có AC = \(\sqrt 2 \) và CC' = 2.

Suy ra \(\left| {\overrightarrow {AC'} } \right|\) = AC' = \(\sqrt {C{{C'}^2} + A{C^2}} \) = \(\sqrt 6 \).