Câu hỏi:

22/08/2024 670

Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau:

a) \(f(x) = x\sqrt {4 - {x^2}} \), −2 ≤ x ≤ 2;

b) f(x) = x – cosx, \( - \frac{\pi }{2} \le x \le \frac{\pi }{2}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) \(f(x) = x\sqrt {4 - {x^2}} \), −2 ≤ x ≤ 2

Ta có: f'(x) = \(\sqrt {4 - {x^2}} + \frac{{ - {x^2}}}{{\sqrt {4 - {x^2}} }}\) = \(\frac{{4 - 2{x^2}}}{{\sqrt {4 - {x^2}} }}\);

           f'(x) = 0 x = ±\(\sqrt 2 \).

Ta tính được các giá trị: f(−2) = f(2) = 0; f(−\(\sqrt 2 \)) = −2; f(\(\sqrt 2 \)) = 2.

Do đó, \(\mathop {\min }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = f\left( { - \sqrt 2 } \right) = - 2\); \(\mathop {\max }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = f\left( {\sqrt 2 } \right) = 2\).

b) f(x) = x – cosx, \( - \frac{\pi }{2} \le x \le \frac{\pi }{2}\)

Ta có: f'(x) = 1 + sinx

           f'(x) = 0 1 + sinx = 0 x = \( - \frac{\pi }{2} + k2\pi \) (k ℤ).

Do \( - \frac{\pi }{2} \le x \le \frac{\pi }{2}\) nên x = \( - \frac{\pi }{2}\) (với k = 0).

Ta tính được các giá trị: \(f\left( {\frac{\pi }{2}} \right) = \frac{\pi }{2}\); \(f\left( { - \frac{\pi }{2}} \right) = \frac{\pi }{2}\).

Vậy \(\mathop {\min }\limits_{\left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]} f\left( x \right) = f\left( { - \frac{\pi }{2}} \right) = - \frac{\pi }{2}\), \(\mathop {\max }\limits_{\left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]} f\left( x \right) = f\left( {\frac{\pi }{2}} \right) = \frac{\pi }{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có: P' = \( - \frac{3}{{10}}\)s2 + 12s

               P' = 0 \( - \frac{3}{{10}}\)s2 + 12s = 0 s = 0 hoặc s = 40.

Ta có bảng biến thiên:

Lợi nhuận thu được P của một công ty khi dùng số tiền s chi cho quảng cáo được cho bởi công thức (ảnh 1)

Vậy để mang lại lợi nhuận tối đa, số tiền công ty phải chi cho quảng cáo là 40 nghìn USD.

b) Từ bảng biến thiên, suy ra:

Lợi nhuận của công ty tăng dần khi số tiền chi cho quảng cáo tăng từ 0 đến 40 nghìn USD

Lợi nhuận của công ty giảm dần khi số tiền chi cho quảng cáo lớn hơn 40 nghìn USD và khi đó, càng tăng tiền quảng cáo thì lợi nhuận càng giảm.

Lời giải

a) Ta có: C = C(x) = \(3,6.\left( {\frac{{2500}}{x} + x} \right)\) với x [10; 75].

                      C'(x) = 3,6.\(\left( { - \frac{{2500}}{{{x^2}}} + 1} \right)\)

                      C'(x) = 0 x = 50 (do x [10; 75]).

Xét trên đoạn [10; 75], ta tính được: C(10) = 936; C(50) = 360; C(75) = 390.

Vậy xe tải đi với tốc độ 50 dặm/giờ thì chi phí nhiên liệu sẽ ít nhất.

b) Trong trường hợp người lái xe tải được trả lương 28 USD/giờ (khi xe chạy) thì chi phí C(X) khi lái xe s dặm là:

C(x) = 28. \(\frac{s}{x}\) + \(\frac{s}{{200}}\left( {\frac{{2500}}{x} + x} \right)\) = \(s.\left( {\frac{{81}}{{2x}} + \frac{x}{{200}}} \right)\).

Ta có: C'(x) = \(s\left( { - \frac{{81}}{{2{x^2}}} + \frac{1}{{100}}} \right)\).

Suy ra C'(x) < 0 với mọi x [10; 75], tức là hàm số C(x) nghịch biến trên đoạn [10; 75]

Vậy xe phải di chuyển với tốc độ 72 dặm/ giờ thì tiết kiệm chi phí nhất.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP