Câu hỏi:

21/08/2024 1,665 Lưu

Trong không gian Oxyz, phương trình nào trong các phương trình sau là phương trình của một mặt cầu? Xác định tâm và bán kính của mặt cầu đó.

a) x2 + y2 + z2 + 2x – 4z + 2 = 0.

b) x2 + y2 + z2 – 2x + 2y + 2z + 7 = 0.

c) 3x2 + 3y2 + 3z2 + 12x – 6y + 6z + 2 = 0.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Phương trình có các hệ số a = −1, b = 0, c = 2 và d = 2.

a2 + b2 + c2 – d = (−1)2 + 02 + 22 – 2 = 3 > 0.

Do đó, phương trình đã cho là phương trình mặt cầu, hơn nữa mặt cầu có tâm là

 I(−1; 0; 2) và bán kính R = \(\sqrt 3 \).

b) Phương trình có các hệ số a = 1, b = −1, c = −1 và d = 7.

a2 + b2 + c2 – d = 12 + (−1)2 + (−1)2 – 7 = −4 < 0.

Do đó, phương trình đã cho không phải là phương trình mặt cầu.

c) Ta có: 3x2 + 3y2 + 3z2 + 12x – 6y + 6z + 2 = 0.

x2 + y2 + z2 + 4x – 2y + 2z + \(\frac{2}{3}\) = 0.

Phương trình có các hệ số: a = −2, b =1, c = −1 và d = \(\frac{2}{3}\).

a2 + b2 + c2 – d = (−2)2 + 12 + (−1)2\(\frac{2}{3}\) = \(\frac{{16}}{3}\) > 0.

Do đó, phương trình đã cho là phương trình mặt cầu có tâm I(−2; 1; −1) và R = \(\frac{{4\sqrt 3 }}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đường hầm thuộc đường thẳng d đi qua A\(\left( {\frac{1}{2};\frac{1}{2};\frac{1}{{\sqrt 2 }}} \right)\) và nhận \(\overrightarrow v \) = (2; 2; −3) làm vectơ chỉ phương.

Phương trình đường thẳng d là: \(\left\{ \begin{array}{l}x = \frac{1}{2} + 2t\\y = \frac{1}{2} + 2t\\z = \frac{1}{{\sqrt 2 }} - 3t\end{array} \right.\).

Gọi B là điểm cuối cùng của đường hầm cần đào.

Khi đó, B là giao điểm của đường thẳng ∆ và mặt cầu (S). Tọa độ B có dạng

B\(\left( {\frac{1}{2} + 2t;\frac{1}{2} + 2t;\frac{1}{{\sqrt 2 }} - 3t} \right)\) (với t ≠ 0 để B khác A) và thỏa mãn phương trình mặt cầu (S), tức là: \({\left( {\frac{1}{2} + 2t} \right)^2} + {\left( {\frac{1}{2} + 2t} \right)^2} + {\left( {\frac{1}{{\sqrt 2 }} - 3t} \right)^2} = 1\)

17t2 + (2 −3\(\sqrt 2 \))t = 0 t = \(\frac{{3\sqrt 2 - 2}}{{17}}\).

Suy ra AB = \(\sqrt {{{\left( {2t} \right)}^2} + {{\left( {2t} \right)}^2} + {{\left( { - 3t} \right)}^2}} = \left| t \right|\sqrt {17} = \frac{{3\sqrt 2 - 2}}{{\sqrt {17} }}\). 

Lời giải

Theo đề bài, tâm I thuộc trục Ox nên I(x; 0; 0).

(S) đi qua hai điểm A và B nên IA = IB.

(x – 1)2 + (0 – 2)2 + (0 – 1)2 = (x + 1)2 + (0 + 2)2 + (0 – 3)2

x2 – 2x + 6 = x2 + 2x + 14

x = −2.

Do đó, tâm I(−2; 0; 0) và bán kính IA = \(\sqrt {14} \).

Phương trình mặt cầu cần tìm là: (x + 2)2 + y2 + z2 = 14.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP