Câu hỏi:

21/08/2024 2,573

Trong không gian Oxyz, cho điểm I(2; −1; 2) và mặt phẳng (P): x + 2y + 2z – 10 = 0. Viết phương trình mặt cầu (S) có tâm I và tiếp xúc với mặt phẳng (P).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Do mặt cầu (S) tiếp xúc với mặt phẳng (P) nên R = d(I, (P)).

Ta có: R = d(I, (P)) = \(\frac{{\left| {2 + 2.( - 1) + 2.2 - 10} \right|}}{{\sqrt {{1^2} + {2^2} + {2^2}} }}\) = 2.

Vậy phương trình mặt cầu (S) là: (x – 2)2 + (y + 1)2 + (z – 2)2 = 22.

(x – 2)2 + (y + 1)2 + (z – 2)2 = 4.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đường hầm thuộc đường thẳng d đi qua A\(\left( {\frac{1}{2};\frac{1}{2};\frac{1}{{\sqrt 2 }}} \right)\) và nhận \(\overrightarrow v \) = (2; 2; −3) làm vectơ chỉ phương.

Phương trình đường thẳng d là: \(\left\{ \begin{array}{l}x = \frac{1}{2} + 2t\\y = \frac{1}{2} + 2t\\z = \frac{1}{{\sqrt 2 }} - 3t\end{array} \right.\).

Gọi B là điểm cuối cùng của đường hầm cần đào.

Khi đó, B là giao điểm của đường thẳng ∆ và mặt cầu (S). Tọa độ B có dạng

B\(\left( {\frac{1}{2} + 2t;\frac{1}{2} + 2t;\frac{1}{{\sqrt 2 }} - 3t} \right)\) (với t ≠ 0 để B khác A) và thỏa mãn phương trình mặt cầu (S), tức là: \({\left( {\frac{1}{2} + 2t} \right)^2} + {\left( {\frac{1}{2} + 2t} \right)^2} + {\left( {\frac{1}{{\sqrt 2 }} - 3t} \right)^2} = 1\)

17t2 + (2 −3\(\sqrt 2 \))t = 0 t = \(\frac{{3\sqrt 2 - 2}}{{17}}\).

Suy ra AB = \(\sqrt {{{\left( {2t} \right)}^2} + {{\left( {2t} \right)}^2} + {{\left( { - 3t} \right)}^2}} = \left| t \right|\sqrt {17} = \frac{{3\sqrt 2 - 2}}{{\sqrt {17} }}\). 

Lời giải

Theo đề bài, tâm I thuộc trục Ox nên I(x; 0; 0).

(S) đi qua hai điểm A và B nên IA = IB.

(x – 1)2 + (0 – 2)2 + (0 – 1)2 = (x + 1)2 + (0 + 2)2 + (0 – 3)2

x2 – 2x + 6 = x2 + 2x + 14

x = −2.

Do đó, tâm I(−2; 0; 0) và bán kính IA = \(\sqrt {14} \).

Phương trình mặt cầu cần tìm là: (x + 2)2 + y2 + z2 = 14.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay