Câu hỏi:
13/07/2024 22,623
Giả sử vận tốc v của dòng máu ở khoảng cách r từ tâm của động mạch bán kính R không đổi, có thể được mô hình hóa bởi công thức v = k(R2 – r2), trong đó k là một hằng số. Tìm vận tốc trung bình (đối với r) của động mạch trong khoảng 0 ≤ r ≤ R. So sánh vận tốc trung bình với vận tốc lớn nhất.
Giả sử vận tốc v của dòng máu ở khoảng cách r từ tâm của động mạch bán kính R không đổi, có thể được mô hình hóa bởi công thức v = k(R2 – r2), trong đó k là một hằng số. Tìm vận tốc trung bình (đối với r) của động mạch trong khoảng 0 ≤ r ≤ R. So sánh vận tốc trung bình với vận tốc lớn nhất.
Câu hỏi trong đề: Giải SGK Toán 12 KNTT Bài 12. Tích phân có đáp án !!
Quảng cáo
Trả lời:
Vận tốc trung bình của động mạch là:
\({v_{tb}} = \frac{1}{{R - 0}}\int\limits_0^R {v\left( r \right)} dr\)\( = \frac{1}{R}\int\limits_0^R {k\left( {{R^2} - {r^2}} \right)} dr\)\( = \left. {\frac{1}{R}k\left( {{R^2}r - \frac{{{r^3}}}{3}} \right)} \right|_0^R\)\( = \frac{2}{3}k{R^2}\).
Do đó, vận tốc trung bình của động mạch là \(\frac{2}{3}k{R^2}\).
Vì 0 ≤ r ≤ R nên vận tốc lớn nhất của động mạch là kR2 khi r = 0.
Do đó \({v_{tb}} = \frac{2}{3}{v_{\max }}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sự thay đổi của lợi nhuận khi doanh số tăng từ 100 lên 101 sản phẩm là:
\(\int\limits_{100}^{101} {P'\left( x \right)} dx = \int\limits_{100}^{101} {\left( { - 0,0005x + 12,2} \right)} dx\)\( = \left. {\left( { - \frac{1}{{4000}}{x^2} + 12,2x} \right)} \right|_{100}^{101}\)
= 1229,64975 – 1217,5 = 12,14975 triệu đồng.
b) Sự thay đổi của lợi nhuận khi doanh số tăng từ 100 lên 110 sản phẩm là
\(\int\limits_{100}^{110} {P'\left( x \right)} dx = \int\limits_{100}^{110} {\left( { - 0,0005x + 12,2} \right)} dx\)\( = \left. {\left( { - \frac{1}{{4000}}{x^2} + 12,2x} \right)} \right|_{100}^{110}\)
= 1338,975 – 1217,5 = 121,475 triệu đồng.
Lời giải
a) Độ dịch chuyển của vật trong khoảng thời gian 1 ≤ t ≤ 4 là
\(\int\limits_1^4 {v\left( t \right)} dt = \int\limits_1^4 {\left( {{t^2} - t - 6} \right)} dt\)\( = \int\limits_1^4 {{t^2}} dt - \int\limits_1^4 t dt - 6\int\limits_1^4 {dt} \)\( = \left. {\left( {\frac{{{t^3}}}{3} - \frac{{{t^2}}}{2} - 6t} \right)} \right|_1^4\)\( = - \frac{{32}}{3} + \frac{{37}}{6} = - \frac{9}{2}\).
b) Tổng quãng đường vật đi được trong khoảng thời gian này là
\(\int\limits_1^4 {\left| {v\left( t \right)} \right|} dt\)\( = \int\limits_1^4 {\left| {{t^2} - t - 6} \right|} dt\)\( = \int\limits_1^3 {\left| {{t^2} - t - 6} \right|} dt + \int\limits_3^4 {\left| {{t^2} - t - 6} \right|} dt\)
\( = - \int\limits_1^3 {\left( {{t^2} - t - 6} \right)} dt + \int\limits_3^4 {\left( {{t^2} - t - 6} \right)} dt\)\( = - \left. {\left( {\frac{{{t^3}}}{3} - \frac{{{t^2}}}{2} - 6t} \right)} \right|_1^3 + \left. {\left( {\frac{{{t^3}}}{3} - \frac{{{t^2}}}{2} - 6t} \right)} \right|_3^4\)\( = \frac{{27}}{2} - \frac{{37}}{6} - \frac{{32}}{3} + \frac{{27}}{2} = \frac{{61}}{6}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.