Giả sử vận tốc v của dòng máu ở khoảng cách r từ tâm của động mạch bán kính R không đổi, có thể được mô hình hóa bởi công thức v = k(R2 – r2), trong đó k là một hằng số. Tìm vận tốc trung bình (đối với r) của động mạch trong khoảng 0 ≤ r ≤ R. So sánh vận tốc trung bình với vận tốc lớn nhất.
Giả sử vận tốc v của dòng máu ở khoảng cách r từ tâm của động mạch bán kính R không đổi, có thể được mô hình hóa bởi công thức v = k(R2 – r2), trong đó k là một hằng số. Tìm vận tốc trung bình (đối với r) của động mạch trong khoảng 0 ≤ r ≤ R. So sánh vận tốc trung bình với vận tốc lớn nhất.
Câu hỏi trong đề: Giải SGK Toán 12 KNTT Bài 12. Tích phân có đáp án !!
Quảng cáo
Trả lời:
Vận tốc trung bình của động mạch là:
\({v_{tb}} = \frac{1}{{R - 0}}\int\limits_0^R {v\left( r \right)} dr\)\( = \frac{1}{R}\int\limits_0^R {k\left( {{R^2} - {r^2}} \right)} dr\)\( = \left. {\frac{1}{R}k\left( {{R^2}r - \frac{{{r^3}}}{3}} \right)} \right|_0^R\)\( = \frac{2}{3}k{R^2}\).
Do đó, vận tốc trung bình của động mạch là \(\frac{2}{3}k{R^2}\).
Vì 0 ≤ r ≤ R nên vận tốc lớn nhất của động mạch là kR2 khi r = 0.
Do đó \({v_{tb}} = \frac{2}{3}{v_{\max }}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sự thay đổi của lợi nhuận khi doanh số tăng từ 100 lên 101 sản phẩm là:
\(\int\limits_{100}^{101} {P'\left( x \right)} dx = \int\limits_{100}^{101} {\left( { - 0,0005x + 12,2} \right)} dx\)\( = \left. {\left( { - \frac{1}{{4000}}{x^2} + 12,2x} \right)} \right|_{100}^{101}\)
= 1229,64975 – 1217,5 = 12,14975 triệu đồng.
b) Sự thay đổi của lợi nhuận khi doanh số tăng từ 100 lên 110 sản phẩm là
\(\int\limits_{100}^{110} {P'\left( x \right)} dx = \int\limits_{100}^{110} {\left( { - 0,0005x + 12,2} \right)} dx\)\( = \left. {\left( { - \frac{1}{{4000}}{x^2} + 12,2x} \right)} \right|_{100}^{110}\)
= 1338,975 – 1217,5 = 121,475 triệu đồng.
Lời giải
a) Độ dịch chuyển của vật trong khoảng thời gian 1 ≤ t ≤ 4 là
\(\int\limits_1^4 {v\left( t \right)} dt = \int\limits_1^4 {\left( {{t^2} - t - 6} \right)} dt\)\( = \int\limits_1^4 {{t^2}} dt - \int\limits_1^4 t dt - 6\int\limits_1^4 {dt} \)\( = \left. {\left( {\frac{{{t^3}}}{3} - \frac{{{t^2}}}{2} - 6t} \right)} \right|_1^4\)\( = - \frac{{32}}{3} + \frac{{37}}{6} = - \frac{9}{2}\).
b) Tổng quãng đường vật đi được trong khoảng thời gian này là
\(\int\limits_1^4 {\left| {v\left( t \right)} \right|} dt\)\( = \int\limits_1^4 {\left| {{t^2} - t - 6} \right|} dt\)\( = \int\limits_1^3 {\left| {{t^2} - t - 6} \right|} dt + \int\limits_3^4 {\left| {{t^2} - t - 6} \right|} dt\)
\( = - \int\limits_1^3 {\left( {{t^2} - t - 6} \right)} dt + \int\limits_3^4 {\left( {{t^2} - t - 6} \right)} dt\)\( = - \left. {\left( {\frac{{{t^3}}}{3} - \frac{{{t^2}}}{2} - 6t} \right)} \right|_1^3 + \left. {\left( {\frac{{{t^3}}}{3} - \frac{{{t^2}}}{2} - 6t} \right)} \right|_3^4\)\( = \frac{{27}}{2} - \frac{{37}}{6} - \frac{{32}}{3} + \frac{{27}}{2} = \frac{{61}}{6}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.