Xét hình thang cong giới hạn bởi đồ thị y = x2, trục hoành và hai đường thẳng x = 1, x = 2. Ta muốn tính diện tích S của hình thang cong này.
a) Với mỗi x ∈ [1; 2], gọi S(x) là diện tích phần hình thang cong đã cho nằm giữa hai đường thẳng vuông góc với trục Ox tại điểm có hoành độ bằng 1 và x (H.4.5).
Cho h > 0 sao cho x + h < 2. So sánh hiệu S(x + h) – S(x) với diện tích hai hình chữ nhật MNPQ và MNEF (H.4.6). Từ đó suy ra \(0 \le \frac{{S\left( {x + h} \right) - S\left( x \right)}}{h} - {x^2} \le 2xh + {h^2}\).
b) Cho h < 0 sao cho x + h > 1. Tương tự phần a, đánh giá hiệu S(x) – S(x + h) và từ đó suy ra \(2xh + {h^2} \le \frac{{S\left( {x + h} \right) - S\left( x \right)}}{h} - {x^2} \le 0\).
c) Từ kết quả phần a và phần b, suy ra với mọi h ≠ 0, ta có \(\left| {\frac{{S\left( {x + h} \right) - S\left( x \right)}}{h} - {x^2}} \right| \le 2x\left| h \right| + {h^2}\).
Từ đó chứng minh S'(x) = x2, x ∈ (1; 2).
Người ta chứng minh được S'(1) = 1, S'(2) = 4, tức là S(x) là một nguyên hàm của x2 trên [1; 2].
d) Từ kết quả của phần c, ta có \(S\left( x \right) = \frac{{{x^3}}}{3} + C\). Sử dụng điều này với lưu ý S(1) = 0 và diện tích cần tính S = S(2), hãy tính S.
Gọi F(x) là một nguyên hàm tùy ý của f(x) = x2 trên [1; 2]. Hãy so sánh S và F(2) – F(1).

Câu hỏi trong đề: Giải SGK Toán 12 KNTT Bài 12. Tích phân có đáp án !!
Quảng cáo
Trả lời:

a) Với h > 0, x + h < 2, kí hiệu SMNPQ và SMNEF lần lượt là diện tích các hình chữ nhật MNPQ và MNEF, ta có: SMNPQ ≤ S(x + h) – S(x) ≤ SMNEF
hay hx2 ≤ S(x + h) – S(x) ≤ h(x + h)2.
Suy ra \(0 \le \frac{{S\left( {x + h} \right) - S\left( x \right)}}{h} - {x^2} \le 2xh + {h^2}\).
b) Với h < 0 và x + h > 1, kí hiệu SMNPQ và SMNEF lần lượt là diện tích các hình chữ nhật MNPQ và MNEF, ta có SMNPQ ≤ S(x + h) – S(x) ≤ SMNEF
hay h(x+h)2 ≤ S(x + h) – S(x) ≤ hx2.
Suy ra \(2xh + {h^2} \le \frac{{S\left( {x + h} \right) - S\left( x \right)}}{h} - {x^2} \le 0\).
c) Dựa vào kết quả của câu a, b ta suy ra với mọi h ≠ 0, ta có:
\(\left| {\frac{{S\left( {x + h} \right) - S\left( x \right)}}{h} - {x^2}} \right| \le 2x\left| h \right| + {h^2}\).
Suy ra \(S'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{S\left( {x + h} \right) - S\left( x \right)}}{h} = {x^2},\forall x \in \left( {1;2} \right)\).
d) Vì S(1) = 0 nên \(S\left( 1 \right) = \frac{{{1^3}}}{3} + C = 0 \Rightarrow C = - \frac{1}{3}\).
Vậy \(S\left( x \right) = \frac{{{x^3}}}{3} - \frac{1}{3}\).
Ta có \(S = S\left( 2 \right) = \frac{{{2^3}}}{3} - \frac{1}{3} = \frac{7}{3}\).
Giả sử \(F\left( x \right) = \frac{{{x^3}}}{3}\) là một nguyên hàm của f(x) = x2 trên [1; 2].
Khi đó \(F\left( 1 \right) = \frac{1}{3};F\left( 2 \right) = \frac{8}{3}\). Ta thấy \(F\left( 2 \right) - F\left( 1 \right) = \frac{7}{3} = S\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sự thay đổi của lợi nhuận khi doanh số tăng từ 100 lên 101 sản phẩm là:
\(\int\limits_{100}^{101} {P'\left( x \right)} dx = \int\limits_{100}^{101} {\left( { - 0,0005x + 12,2} \right)} dx\)\( = \left. {\left( { - \frac{1}{{4000}}{x^2} + 12,2x} \right)} \right|_{100}^{101}\)
= 1229,64975 – 1217,5 = 12,14975 triệu đồng.
b) Sự thay đổi của lợi nhuận khi doanh số tăng từ 100 lên 110 sản phẩm là
\(\int\limits_{100}^{110} {P'\left( x \right)} dx = \int\limits_{100}^{110} {\left( { - 0,0005x + 12,2} \right)} dx\)\( = \left. {\left( { - \frac{1}{{4000}}{x^2} + 12,2x} \right)} \right|_{100}^{110}\)
= 1338,975 – 1217,5 = 121,475 triệu đồng.
Lời giải
a) Độ dịch chuyển của vật trong khoảng thời gian 1 ≤ t ≤ 4 là
\(\int\limits_1^4 {v\left( t \right)} dt = \int\limits_1^4 {\left( {{t^2} - t - 6} \right)} dt\)\( = \int\limits_1^4 {{t^2}} dt - \int\limits_1^4 t dt - 6\int\limits_1^4 {dt} \)\( = \left. {\left( {\frac{{{t^3}}}{3} - \frac{{{t^2}}}{2} - 6t} \right)} \right|_1^4\)\( = - \frac{{32}}{3} + \frac{{37}}{6} = - \frac{9}{2}\).
b) Tổng quãng đường vật đi được trong khoảng thời gian này là
\(\int\limits_1^4 {\left| {v\left( t \right)} \right|} dt\)\( = \int\limits_1^4 {\left| {{t^2} - t - 6} \right|} dt\)\( = \int\limits_1^3 {\left| {{t^2} - t - 6} \right|} dt + \int\limits_3^4 {\left| {{t^2} - t - 6} \right|} dt\)
\( = - \int\limits_1^3 {\left( {{t^2} - t - 6} \right)} dt + \int\limits_3^4 {\left( {{t^2} - t - 6} \right)} dt\)\( = - \left. {\left( {\frac{{{t^3}}}{3} - \frac{{{t^2}}}{2} - 6t} \right)} \right|_1^3 + \left. {\left( {\frac{{{t^3}}}{3} - \frac{{{t^2}}}{2} - 6t} \right)} \right|_3^4\)\( = \frac{{27}}{2} - \frac{{37}}{6} - \frac{{32}}{3} + \frac{{27}}{2} = \frac{{61}}{6}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.