Câu hỏi:
12/07/2024 13,672
Tính thể tích của khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đường sau xung quanh trục Ox: y = 2x – x2, y = 0, x = 0, x = 2.
Tính thể tích của khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đường sau xung quanh trục Ox: y = 2x – x2, y = 0, x = 0, x = 2.
Quảng cáo
Trả lời:
Thể tích cần tìm là:
\(V = \pi \int\limits_0^2 {{{\left( {2x - {x^2}} \right)}^2}dx} \)\( = \pi \int\limits_0^2 {\left( {4{x^2} - 4{x^3} + {x^4}} \right)dx} \)\( = \pi \left. {\left( {\frac{4}{3}{x^3} - {x^4} + \frac{{{x^5}}}{5}} \right)} \right|_0^2\)\( = \frac{{16\pi }}{{15}}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Xét tam giác OAB vuông tại A, có AB = OA.tanα = a.tanα.
Khi quay miền tam giác OAB xung quanh trục Ox ta được khối nón có bán kính đáy r = AB = a.tanα và chiều cao h = OA = a.
Do đó \(V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi {a^3}{\tan ^2}\alpha \).
b) Có \(V' = \frac{1}{3}\pi {a^3}.2\tan \alpha .\frac{1}{{{{\cos }^2}\alpha }}\).
Vì \(0 < \alpha \le \frac{\pi }{4}\) Þ 0 < tanα ≤ 1 nên V' > 0. Do đó V là hàm số đồng biến trên \(\left( {0;\frac{\pi }{4}} \right)\).
Do đó \(\mathop {\max }\limits_{\left( {0;\frac{\pi }{4}} \right]} V = V\left( {\frac{\pi }{4}} \right) = \frac{1}{3}\pi {a^3}\).
Vậy \(\alpha = \frac{\pi }{4}\) thì thể tích khối nón là lớn nhất.
Lời giải
Sự bất bình đẳng thu nhập của Hoa Kỳ vào năm 2005 là:
\(S = \int\limits_0^{100} {\left| {{{\left( {0,00061{x^2} + 0,0218x + 1723} \right)}^2} - x} \right|dx} \)
\( = \int\limits_0^{100} {\left| {\left( {{{0,00061}^2}{x^4} + {{4,7524.10}^{ - 4}}{x^2} + {{1723}^2} + {{2,6596.10}^{ - 5}}{x^3} + 2,10206{x^2} + 75,1228x} \right) - x} \right|dx} \)
\( = \int\limits_0^{100} {\left| {\left( {{{0,00061}^2}{x^4} + {{2,6596.10}^{ - 5}}{x^3} + 2,10253524{x^2} + 74,1228x + {{1723}^2}} \right)} \right|dx} \)
\( = \int\limits_0^{100} {\left( {{{0,00061}^2}{x^4} + {{2,6596.10}^{ - 5}}{x^3} + 2,10253524{x^2} + 74,1228x + {{1723}^2}} \right)dx} \)
\[ = \left. {\left( {{{7,442.10}^{ - 8}}.{x^5} + {{6,649.10}^{ - 6}}.{x^4} + 0,70084508.{x^3} + 37,0614.{x^2} + {{1723}^2}.x} \right)} \right|_0^{100}\]
\[ = {7,442.10^{ - 8}}{.100^5} + {6,649.10^{ - 6}}{.100^4} + {0,70084508.100^3} + {37,0614.100^2} + {1723^2}.100\]
= 297945768,2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.