Câu hỏi:

13/07/2024 6,804

Khối chỏm cầu có bán kính R và chiều cao h (0 < h ≤ R) sinh ra khi quay hình phẳng giới hạn bởi cung tròn có phương trình y=R2x2, trục hoành và hai đường thẳng x = R – h, x = R xung quanh trục Ox (H.4.30). Tính thể tích của khối chỏm cầu này.

Khối chỏm cầu có bán kính R và chiều cao h (0 < h ≤ R) sinh ra khi quay hình phẳng giới hạn bởi cung tròn có phương trình (ảnh 1)

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Thể tích cần tìm là:

\(V = \pi \int\limits_{R - h}^R {\left( {{R^2} - {x^2}} \right)dx} \)\( = \pi \left. {\left( {{R^2}x - \frac{{{x^3}}}{3}} \right)} \right|_{R - h}^R\)

\( = \pi \left( {{R^3} - \frac{{{R^3}}}{3} - {R^2}\left( {R - h} \right) + \frac{{{{\left( {R - h} \right)}^3}}}{3}} \right)\)\( = \pi \left( {{R^3} - \frac{{{R^3}}}{3} - {R^3} + {R^2}h + \frac{{{R^3}}}{3} - {R^2}h + R{h^2} - \frac{{{h^3}}}{3}} \right)\)

\( = \pi \left( {R{h^2} - \frac{{{h^3}}}{3}} \right)\)\( = \pi {h^2}\left( {R - \frac{h}{3}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác vuông OAB có cạnh OA = a nằm trên trục Ox và AOB^=α0<απ4. Gọi β là khối tròn xoay sinh ra khi quay miền tam giác OAB xung quanh trục Ox (H.4.31).

a) Tính thể tích V của β theo a và α.

b) Tìm α sao cho thể tích V lớn nhất.

Cho tam giác vuông OAB có cạnh OA = a nằm trên trục Ox và (ảnh 1)

Xem đáp án » 13/07/2024 8,703

Câu 2:

Các nhà kinh tế sử dụng đường cong Lorenz để minh họa sự phân phối thu nhập trong một quốc gia. Gọi x là đại diện cho phần trăm số gia đình trong một quốc gia và y là phần trăm tổng thu nhập, mô hình y = x sẽ đại diện cho một quốc gia mà các gia đình có thu nhập như nhau. Đường cong Lorenz y = f(x), biểu thị phân phối thu nhập thực tế. Diện tích giữa hai mô hình này, với 0 ≤ x ≤ 100, biểu thị “sự bất bình đẳng về thu nhập” của một quốc gia. Năm 2005, đường con Lorenz của Hoa Kỳ có thể được mô hình hóa bởi hàm số

y = (0,00061x2 + 0,0218x + 1723)2, 0 ≤ x ≤ 100,

trong đó x được tính từ các gia đình nghèo nhất đến giàu có nhất (Theo R.Larson, Brief Calculus: An Applied Approach, 8th edition, Cengage Learning, 2009).

Tìm sự bất bình đẳng thu nhập của Hoa Kỳ vào năm 2005.

Xem đáp án » 13/07/2024 7,817

Câu 3:

Tính diện tích của hình phẳng giới hạn bởi các đường:

a) y = ex, y = x2 – 1, x = −1, x = 1;

b) y = sinx, y = x, \(x = \frac{\pi }{2},x = \pi \);

c) y = 9 – x2, y = 2x2, \(x = - \sqrt 3 ,x = \sqrt 3 \);

d) \(y = \sqrt x ,\)y = x2, x = 0, x = 1.

Xem đáp án » 13/07/2024 3,200

Câu 4:

Ta biết rằng hàm cầu liên quan đến giá p của một sản phẩm với nhu cầu của người tiêu dùng, hàm cung liên quan đến giá p của sản phẩm với mức độ sẵn sàng cung cấp sản phẩm của nhà sản xuất. Điểm cắt nhau (x0; p0) của đồ thị hàm cầu p = D(x) và đồ thị hàm cung p = S(x) được gọi là điểm cân bằng.

Các nhà kinh tế gọi diện tích của hình giới hạn bởi đồ thị hàm cầu, đường ngang p = p0 và đường thẳng đứng x = 0 là thặng dư tiêu dùng. Tương tự, diện tích của hình giới hạn bởi đồ thị của hàm cung, đường nằm ngang p = p0 và đường thẳng đứng x = 0 được gọi là thặng dư sản xuất, như trong Hình 4.19.

(Theo R.Larson, Brief Calculus: An Applied Approach, 8th edition, Cengage Learning, 2009).

Giả sử hàm cung và hàm cầu của một loại sản phẩm được mô hình hóa bởi:

Hàm cầu: p = −0,36x + 9 và hàm cung: p = 0,14x + 2, trong đó x là số đơn vị sản phẩm. Tìm thặng dư tiêu dùng và thặng dư sản xuất cho sản phẩm này.

Ta biết rằng hàm cầu liên quan đến giá p của một sản phẩm với nhu cầu của người tiêu dùng, hàm cung (ảnh 1)

Xem đáp án » 13/07/2024 3,109

Câu 5:

Tính thể tích của khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đường sau xung quanh trục Ox: y = 2x – x2, y = 0, x = 0, x = 2.

Xem đáp án » 12/07/2024 3,101

Câu 6:

Tính diện tích của hình phẳng được tô màu trong Hình 4.29.

Tính diện tích của hình phẳng được tô màu trong Hình 4.29.   (ảnh 1)

Xem đáp án » 13/07/2024 2,002

Bình luận


Bình luận